This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.
Cynthia Passmore
This project is documenting how middle and secondary school science teachers first develop a perspective on science learning, translate that perspective into their own teaching practice and finally make explicit links to their colleagues. The research is investigating the impact of professional development based on model-based reasoning, supported by Lesson Study and an apprentice-like program in teacher leadership.
This project addresses the need for a curricular resource package to support a high school biology course fully aligned to the core ideas, crosscutting concepts, and scientific practices of College and Career Readiness standards. The project will develop a suite of resources including educative curricular materials, pedagogical tools, intensive teacher professional development, and video documentation of exemplary implementation and investigate the impact of the instructional resource on teacher and student learning.
Given the national priority for America's leadership in science, there is a need to strengthen the quality of teaching and learning in science classrooms. This conference brings together researchers, practitioners, curriculum developers, and policymakers to chart the future of curriculum-based professional development (CPBL) in science education. CBPL is an approach that uses high-quality curricular materials as a catalyst for teacher learning. Presently, the field is not clear about how teachers learn from these well-designed materials and what other supports might be necessary. This conference aims to address pressing questions about how high-quality materials can drive teacher learning, how materials should be designed to support teacher learning trajectories, how CBPL can promote high quality science education, and what organizational supports are needed for successful implementation. Through structured collaboration among stakeholders, the gathering will consolidate existing work and generate concrete plans for advancing both research and practice in ways that honor teacher professionalism while supporting student learning in science.