This project is developing a series of print and web resource guides in science and mathematics based on curriculum topic study (CTS), an approach developed and tested successfully. CTS is used to provide a systematic way of intellectually engaging K-12 mathematics and science teachers with national standards and cognitive research. It is used to engage teachers in thought and discussion about both content and appropriate ways of teaching that content.
Projects
This project is demonstrating the use of cyber-enabled technologies to build and share adaptable interventions for pre- and in-service teacher growth that effectively make use of major video collections and have high promise of success at multiple sites. The cyber infrastructure being significantly extended through this project is supporting development and documentation of additional interventions for teacher professional development using this video collection, as well as other videos that might be added in the future.
This project is developing new instructional materials for middle school earth science classes that incorporate emerging cyber-enabled technologies such as Google Earth as a transformative data analysis tool. The materials emphasize the use of claims, evidence, and reasoning in the exploration of volcanoes, earthquakes, and plate tectonics, leading students through a process of discovery to help them build a deeper understanding of the driving forces and resulting manifestations of plate tectonics.
CyberSTEM is developing and testing an integrated digital gaming network that spans homes, schools, and informal learning settings, offering a suite of digital games based on cutting-edge discoveries in the life sciences. The project asks if participation in CyberSTEM leads to increased learning in six areas: interest in science, conceptual knowledge, scientific reasoning, reflection on knowing, participating in science, and identifying as a scientist. The target audience includes youth in grades 6-9.
This project evaluates the benefits of using different types of place-based ecological data in high school science classrooms. This project will assess the use of first-hand (collected by students) and real-time second-hand data in teaching science and critical thinking skills. The guiding question for the project is "Does using place-based, first-hand ecological evidence, and relating that to place-based, second-hand data, improve students' environmental science literacy, nature of science understanding, and knowledge of ecological concepts?"
The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.
This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).
Mathematical Opportunities in Student Thinking (MOSTs) are high-leverage instances of student mathematical thinking that emerge in whole-class discussions. The challenge for teachers is to build on these opportunities to help the whole class understand the mathematics underlying these student contributions. To help teachers learn how to build on MOSTs, there is a need for professional development resources and tools that facilitators can use. There is also a need for research about how teachers use what they learn in professional development in their teaching. This project is developing a teacher learning sequence that will support teachers in learning to productively use student thinking that surfaces in-the-moment during their instruction—that is, in learning to build on MOSTs.
Mathematical Opportunities in Student Thinking (MOSTs) are high-leverage instances of student mathematical thinking that emerge in whole-class discussions. The challenge for teachers is to build on these opportunities to help the whole class understand the mathematics underlying these student contributions. To help teachers learn how to build on MOSTs, there is a need for professional development resources and tools that facilitators can use. There is also a need for research about how teachers use what they learn in professional development in their teaching. This project is developing a teacher learning sequence that will support teachers in learning to productively use student thinking that surfaces in-the-moment during their instruction—that is, in learning to build on MOSTs.
This project is developing a model for integrating best practices in technology-supported instructional design and formative assessment for genetics instruction in upper elementary, middle and high school. Using the Web-based Inquiry Science Environment platform, the project is developing school curriculum that scaffold and model scientific practices, enable students to interface with real-world problems, provide opportunities for students to make connections between visible phenomena and underlying genetic processes, and promote student monitoring and reflection on learning.
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.
This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers.
The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.
A principled framework is created for the development of learning progressions in science that can demonstrate how their use can transform the way researchers, educators and curriculum developers conceptualize important scientific constructs. Using the construct of transformation of matter, which requires understanding of both discrete learning goals and also the connections between them, a hypothetical learning progression is constructed for grades 5-12.
This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.
The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.
The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.
The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.
The goal of this project is to study the design and development of community-centered, job-embedded professional development for classroom teachers that supports bias reduction. The project team will partner with three school districts serving racially, ethnically, linguistically, and socio-economically diverse communities, for a two-year professional development program. The aim is to reduce bias through: analyzing and designing mathematics teaching with colleagues, students, and families to create classrooms and schools based on community-centered mathematics; engaging in anti-bias teaching routines; and building relationships with parents, caretakers, and community members.