The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms; design, develop, and iteratively refine its intelligent virtual learning companions; and generate research findings and evidence about how children collaborate in computer science learning and how best to support their collaboration with intelligent virtual learning companions.
Projects
This project engages children in classrooms across the country in an authentic investigation of Devonian fossils. Goals include supporting children in the use of evidence in constructing explanations of natural phenomena, and motivating culturally and linguistically diverse groups of children to engage in learning science. Deliverables include development and testing of an interactive website where children learn how to identify the fossils they find and add their own data to an emerging database.
This project uses new psychometric techniques to create a technological tool that could evaluate how well students in the 4th-8th mathematics and science classrooms respond to complex performance tasks. The purpose of this tool is to improve the instruction of teachers in mathematics and science. It will produce real-time individualized diagnoses of instructional needs to help teachers plan instruction that specifically addresses the learning needs of each student in that class.
This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.
This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.
This professional development project engages a sample of kindergarten and 1st-grade teachers in a series of workshops, during which teachers will work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge.
Videos of teaching have become a popular tool for facilitating teacher learning, with the potential to powerfully impact teacher practice. However, less is known about specific mechanisms through which teachers learn from video. The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development (PD) context.
This project explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics.
This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.
This project will explore the influence of a professional learning community model on preparing preservice and novice science teachers to teach in culturally and linguistically diverse classrooms of English language learners. The project will study the effect of a professional learning community model on teachers' self-efficacy beliefs and practices as it relates to teaching science to this population.
This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources, and how the resources then relate to kindergartners mathematics learning.
This intervention will explore whether technology enhanced professional development will provide third and fifth grade science teachers with the knowledge and skills needed to prepare and inspire students to become more interested and motivated to pursue careers in STEM fields. The professional development will provide teachers with instructional strategies that promote students' relational mattering and sense of belonging that will help retain students in the STEM pipeline.
This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.
This project will explore how children in grades K-2 understand visual representations of algebraic concepts. For instance, children might create tables or graphs to organize information about the relationship between two quantities. They might use graphs and diagrams to explain their mathematical thinking and develop their understanding of relationships in numbers and operations. The project will use data gathered in K-2 classrooms and via interviews with children to describe their use of the visual representations. This exploratory project aims to develop learning trajectories as cognitive models of how children in grades K–2 understand visual representations for algebraic relationships.
This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.
This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.
This project is assessing the potential value and feasibility of developing and implementing content standards for K-12 engineering education. The project is reviewing existing efforts to define what students should know; identifying elements of existing standards for related content areas that could link to engineering; considering how purposes for engineering education might affect content and implementation of standards; and suggesting changes to policies, programs, and practices necessary to develop and implement engineering standards.
In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.
This project will improve STEM education by studying the various strategies taught to and used by students for solving multi-digit multiplication and division to develop a more cohesive understanding of children's multiplicative reasoning. The work will also support teachers’ ability to better support students’ multiplicative reasoning strategies via professional development videos that help them learn about students’ strategies.
This project will provide evidence on how school, classroom, teacher, and student factors shape elementary school science learning trajectories for English learners (ELs). The project will broaden ELs’ participation in STEM learning by investigating how individual, classroom, and school level situations such as instructional practices, learning environments, and characteristics of school personnel relate to EL elementary school science learning.
Teacher professional learning is a critical part of the mathematics education landscape. For decades, professional learning has been the primary strategy for developing the skills of the teaching workforce and changing how teachers interact with students in classrooms around academic content. Professional learning also can be expensive for districts, both financially and in terms of teacher time. Given these investments, most school leaders wish to spend their professional development dollars efficiently, making decisions about professional learning design that maximize teacher and student learning. However, despite more than two decades of rigorous research on professional learning programs, practitioners have little causal evidence on which professional learning design features work to accelerate teacher learning. This project seeks to identify features of teacher professional learning experiences that lead to better mathematics outcomes for both teachers and students.
There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.
There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.
There is a need for resources for teacher education programs to help pre-service teachers learn about equitable mathematics approaches to teaching and learning. This project will develop modules, resources, and tools for exploring how teachers' understanding of equity changes from their last year of the preparation program into their first year of teaching. The tools and resources can be shared with other teacher education programs.
This research synthesis study reviews the effects of professional learning interventions and will advance STEM educators' understanding of the critically important relationships among teacher professional learning (PL), teacher knowledge and practice, and average student effects. Understanding these relationships will allow the field to design better PL experiences for teachers that truly benefit student learning.