This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.
Projects
This project examines relationships among pre-service teachers' developing understanding of learning in mathematics and science, the enactment of these understandings as they begin teaching. The objectives are (1) to inform the design of teacher preparation programs, and (2) to support the development of appropriate tools to assess the impact of teacher preparation program features on elementary- and middle-school student learning.
The project makes use of technology to create timely, valid, and actionable reports to teachers by analyzing assessments and logs of student actions generated in the course of using computer-based curriculum materials. The reports allow teachers to make data-based decisions about alternative teaching strategies. The technology supports student collaborations and the assignment of different learning activities to groups, an essential function needed for universal design for learning (UDL).
This project builds on a prior study that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. The project will extend the use of the argumentation intervention into all eighth grade content areas, with a specific focus on students' learning of reasoning and proof, and contribute to understanding how students' learning about mathematical practices that can help them learn mathematics better.
The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.
This project develops ecosystems-focused instructional materials that use sensor data and technology to help second and third graders become more proficient at data modeling and scientific argumentation. The goals are to provide elementary teachers with a research-based curriculum that engages students in exploring and visualizing environmental data and using the data to construct scientific arguments, and to contribute to the cognitive development literature on children's ideas about and abilities for scientific argumentation.
A major scientific issue of our time is global warming and climate change. Many facets of human life are and will continue to be influenced by this. However, an adequate understanding of the problem requires an understanding of various domains of science. There has been little research done on effects of intervention on student learning of these topics. This project shows an improvement in student knowledge of climate change and related issues.
This project is exploring teachers' capacity to manage student epistemic uncertainty as a pedagogical resource that supports student’s productive struggle and the development of conceptual knowledge during project-based learning instruction in middle school science classrooms.
Young children thrive when strong relationships exist between their home and school environments. Early home and school experiences support the development of mathematical skills. Often, schools and teachers struggle to establish these strong relationships; therefore, Math Partners will work with teachers and teaching assistants in classroom design teams to help teachers establish healthy, positive relationships with families that center families’ knowledge and experiences in the context of mathematics.
Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.
Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases.
Developers and researchers from the Consortium for Mathematics and Its Applications (COMAP) and Teachers College are developing a Mathematical Modeling Handbook to assist high school mathematics teachers in integrating modeling into their curricula. The development team is also investigating how the lessons are used and working with the National Council of Teachers of Mathematics, the National Council of Supervisors of Mathematics, and the Association of State Supervisors to ensure a broad dissemination.
This project is developing, designing, and testing materials for professional development leaders (e.g., teacher educators, district mathematics specialists, secondary mathematic department chairs) to use in their work with secondary mathematics teachers. The aim is to help those teachers analyze the discourse patterns of their own classrooms and improve their skills in creating discourse patterns that emphasize high-level mathematical explanation, justification, and argumentation.
This project is designing, developing, and testing an innovative approach to elementary students' learning in the critical areas of multiplicative reasoning, fractions, and proportional reasoning. The project is building on the successful El'Konin-Davydov (E-D) elementary mathematics curriculum that originated in Russia to develop a curriculum framework that can be implemented in U. S. schools. The ultimate product of the research will be a rational number learning progression consisting of carefully articulated and sequenced learning goals.
In this project, investigators will convene a group of 15 African American science educators, scientists, and doctoral student scholars and assign them to small work groups to design and conduct multi-site micro-research studies on learning activities that promote science learning and teaching. Work groups will investigate different learning and teaching approaches used in K-12 rural and urban school settings to identify effects on student science learning using quantitative, qualitative, or mixed design studies.
This project is developing and validating an assessment instrument that addresses the life sciences for students and teachers in grades 9 through 12 based on the Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART).
The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.
The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.
The project addresses the historic marginalization of women and minoritized racial/ethnic (MRE) groups in physics. The aim of the project is to co-design, test, and disseminate professional learning for high school physics teachers, specifically targeting the implementation of inclusive and equitable practices that support physics identity development and persistence of women and MRE groups.
This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.
This project is conducting a longitudinal study of the effects of a pre-service elementary science education. Through overlapping studies on the pre-service teachers (PSTs) and in-service teachers who are graduates of the program, this project is seeking to analyze the impact of three essential dimensions of teacher preparation: inquiry-based science content courses, science methods/practicum courses, and k-12 mentor teachers.
This project investigates 3rd-grade students' model-based reasoning about hydrologic systems and how teachers scaffold students' engagement in modeling practices. The research builds upon existing modeling frameworks to guide the development and integration of a long-term conceptual modeling task into the Full Option Science System (FOSS) Water module. The data collected from this project can help inform science curriculum materials development and elementary teacher preparation efforts designed to foster reform-oriented, model-centered elementary science learning environments.
This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.
This study will investigate factors influencing the persistence of teacher change after professional development (PD) experiences, and will examine the extent to which modest supports for science teaching in grades K-5 sustain PD outcomes over the long term.
This project recruited high school African American males to begin preparation for science, technology, engineering and mathematics teaching careers. The goal of the program was to recruit and prepare students for careers in secondary mathematics and science teaching thus increasing the number of African Americans students in STEM. The research will explore possible reasons why the program is or is not successful for recruiting and retaining students in STEM Teacher Education programs