Projects

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

09/01/2024

Research has shown that educational games can increase student motivation, support critical thinking, problem-solving, and communication skills. This project will explore what approaches to the design of virtual labs, games, and bridging curriculum can most effectively support middle-school student development of interest and learning of scientific practices and contribute to the development of a science identity.

09/01/2024

Research has shown that when teachers have strong content and pedagogical content knowledge that they can provide better quality mathematics instruction to their students and improve student outcomes. The goal of this project is to enhance elementary school teachers’ capacity to improve students’ mathematics learning through a scaled professional development program that uses artificial intelligence (AI) to create a personalized, active learning environment for teachers.

09/01/2024

Despite the importance of addressing climate change, existing K-12 curricula struggle to make the urgency of the situation personally relevant to students. This project seeks to address this challenge in climate change education by making the abstract, global, and seemingly intractable problem of climate change concrete, local, and actionable for young people. The goal of this project is to develop and test actLocal, an online platform for K–12 teachers, students, and the public to easily create localized climate change adaptation simulations for any location in the contiguous United States. These simulations will enable high school students and others to implement and evaluate strategies to address the impacts of climate change in their own communities.

09/01/2024

Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.

09/01/2024

This project will develop a technology platform that can streamline lesson planning and allow teachers to adapt resources to their students' needs. The project will design and investigate an AI-powered lesson plan tool for middle-grades mathematics teaching called Colleague. Using existing, open-access lesson plans that have been vetted in prior work, the project would refine the tool for generating math lesson plans and supporting teachers to iteratively improve their instruction. Streamlining lesson planning would open more time for teacher creativity and reduce job stress. The study would explore how teachers use Colleague to plan and adapt lessons, the influence on teaching, and the students' learning.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.