Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.
Projects
Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.
Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.
Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.
Teachers of mathematics engage in curricular reasoning as they design and interact with their students, choose curricular materials, and implement curriculum standards in the service of high-quality instruction. Currently, there is no shared measure of curricular reasoning of middle school teacher classroom decision making in mathematics. In this research project, the team develops and validates two measures of middle school teachers’ curricular reasoning in mathematics as practiced. The first measure looks at curriculum reasoning from the perspective of the teacher, the second measure attends to the perspectives of the mathematics education research community.
In this project, a video and audio network links elementary school teachers with researchers and educators at Purdue to form a community of practice dedicated to implementing engineering education at the elementary grades. The research plan includes identifying the attributes of face-to-face and cyber-enabled teacher professional development and community building that can transform teachers into master users and designers of engineering education for elementary learners.
The PuM project develops and conducts research on a learning continuum for seamless instruction in middle school physical science and high school physics. The ultimate goal is to use physics as the context to develop mathematics literacy, particularly with students from underrepresented populations and special needs students. The research component analyzes the effects of the curriculum on students' learning while simultaneously investigating teachers' pedagogical content knowledge in a variety of forms.
This study takes an innovative approach to documenting how teacher knowledge can be enhanced by incorporating a design experience into pre-service mathematics education. Teachers will use digital and fabrication technologies (e.g., 3D printers and laser cutters) to design and use manipulatives for K-6 mathematics learning. The goals of the project include describing how this experience influences the prospective teachers' knowledge and identities while creating curriculum for teacher education.
This project focuses on the creation of the initial functionality for a dynamic microworld, Proportions Playground, designed to support teachers in developing a coherent understanding of proportional reasoning. The Proportions Playground project seeks to both develop a unique pilot software application for the iPad and explore how it supports teachers in developing a coherent, robust definition of proportions.
The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically.
Project M2 is producing and disseminating curriculum materials in geometry and measurement for students in grades K-2. This builds on success of the M3 U.S. Department of Education curriculum grant for students in Grades 3-5. (www.projectm3.org). Project M2 units are advanced units for all students designed using research-based practices in mathematics, early childhood, and gifted education. Curricular materials focus on promising discourse and hands-on inquiry of rich problem-situations.
The purpose of Project Delta is two-fold: (1) to extend an existing library of 17 interacting CD-ROM digital learning environments on numbers and operations by adding an algebra strand, and (2) to evaluate the impact of the new algebra materials on teacher development. Each of the digital environments features classroom sessions that allow for exploration of a mathematics topic, children learning over time, and teachers? instructional techniques.
The project is studying the impact of the mathematics and science intensive pre-service preparation program for elementary school teachers. The project includes assessments of pre-service teachers' math and science content, teacher performance, self-report surveys, and teacher interviews. Each of the study dimensions (Knowledge Dimension, Teaching Performance, and Perspectives on the Program) will be assessed at three time points across this longitudinal study, providing a model for elementary teacher development of STEM teaching.
Over the years, researchers and practitioners have created and tested different ways to support students who struggle with learning mathematics. These methods include directly teaching various mathematics skills and strategies that affect mathematics performance, such as alleviating mathematics anxiety and fostering motivation and engagement in mathematics learning. The idea is that teaching mathematics using a mix of these skills or strategies might help students learn better than teaching just one skill or strategy at a time. However, it remains unclear which skills or strategies should be taught together and if mixing different skills or strategies leads to differential effects across different students or contexts. Understanding this is vital because it can help researchers and practitioners determine the best ways to address the need of struggling students in mathematics. A network meta-analysis will allow the field to examine different combinations of instructional skills/strategies as well as their interaction effects, which can provide more optimal information about different instructional approaches.
This project will adapt and study successful discourse strategies used during language arts instruction to help teachers promote mathematically-rich classroom discourse. Of special interest is the use of models to promote mathematics communication that includes English language learners (ELL) in mathematics discourse.The project will result in a full 40-hour professional development module to support mathematics discourse for Grade 2 teachers, with an emphasis on place value, multidigit addition and subtraction, and linear measurement.
The project is designing a web-based, district-led professional development implementation, focusing on improving mathematics discourse practices in K-2 classrooms, with particular attention to emergent multilingual learners. Building on two prior NSF-funded projects, the All Included in Mathematics K-2 New Extensions professional learning program will develop and research the impact of an augmented model for mathematics professional development on K-2 student learning through the addition of supports for coaches and leaders to the existing professional development model.
The project is designing a web-based, district-led professional development implementation, focusing on improving mathematics discourse practices in K-2 classrooms, with particular attention to emergent multilingual learners. Building on two prior NSF-funded projects, the All Included in Mathematics K-2 New Extensions professional learning program will develop and research the impact of an augmented model for mathematics professional development on K-2 student learning through the addition of supports for coaches and leaders to the existing professional development model.
This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.
This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.
The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.
This project will design and study an online, portable mentor teacher professional development (PD) program that target mentors’ teaching and feedback skills in elementary mathematics. The project aims to (1) promote educator development by generating new knowledge about how to help mentors support teacher candidate learning; (2) broaden participation in mathematics by historically marginalized and minoritized youth, who are far more likely than their peers to be taught by a first year teacher; and (3) enhance infrastructure for research and education by generating PD materials and measures that can be used and studied at scale.
The purpose of this 4-year project is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component and (b) hands-on activities.
This project is using Second Life and other technology to structure carefully planned learning experiences for pre-service teachers. Virtual technologies are used to provide pre-service teachers practice in presenting and assessing problem solving activities in a virtual classroom with diverse populations. Researchers hypothesize that technology enriched strategies have the potential to deepen pre-service teachers' understanding and effectiveness in teaching emerging algebra concepts to diverse student populations.
This project is initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds.
This project seeks to develop a personalized, scalable PD approach that centers on and builds from algebra teachers’ practices and individual strengths. The project will focus its PD efforts on instructional actions that are tailored to teachers' existing practice, can be readily adopted, and are easily accessible.