Projects

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

12/01/2024

STEM learning is a function of both student level and classroom level characteristics. Though research efforts often focus on the impacts of classrooms level features, much of the variation in student outcomes is at the student level. Hence it is critical to consider individual students and how their developmental systems (e.g., emotion, cognition, relational, attention, language) interact to influence learning in classroom settings. This is particularly important in developing effective models for personalized learning. To date, efforts to individualize curricula, differentiate instruction, or leverage formative assessment lack an evidence base to support innovation and impact. Tools are needed to describe individual-level learning processes and contexts that support them. The proposed network will incubate and pilot a laboratory classroom to produce real-time metrics on behavioral, neurological, physiological, cognitive, and physical data at individual student and teacher levels, reflecting the diverse dynamics of classroom experiences that co-regulate learning for all students.