Disciplinary Content Knowledge

Instructional Pathways to Considering Social Dimensions Within Socioscientific Issues

The Socioscientific Issues Teaching and Learning (SSI-TL) framework is a guide for developing an instructional approach to learning experiences focused on socioscientific issues (SSI). Despite the potential benefits of SSI learning, teachers often struggle to implement this approach in their classrooms (Sadler et al., 2006; Saunders & Rennie, 2013), and one of the most prominent reasons for this struggle is science teacher concerns and hesitation associated with incorporating social dimensions of the issues into their instruction (Friedrichsen et al., 2021).

Author/Presenter

Rebecca Rawson Lesnefsky

Troy Sadler

Li Ke

Pat Friedrichsen

Year
2023
Short Description

The Socioscientific Issues Teaching and Learning (SSI-TL) framework is a guide for developing an instructional approach to learning experiences focused on socioscientific issues (SSI). Despite the potential benefits of SSI learning, teachers often struggle to implement this approach in their classrooms, and one of the most prominent reasons for this struggle is science teacher concerns and hesitation associated with incorporating social dimensions of the issues into their instruction. The purpose of this article is to provide science teacher educators with tools to help teachers better manage the integration of the social dimensions of SSI in issues-based teaching.

Instructional Pathways to Considering Social Dimensions Within Socioscientific Issues

The Socioscientific Issues Teaching and Learning (SSI-TL) framework is a guide for developing an instructional approach to learning experiences focused on socioscientific issues (SSI). Despite the potential benefits of SSI learning, teachers often struggle to implement this approach in their classrooms (Sadler et al., 2006; Saunders & Rennie, 2013), and one of the most prominent reasons for this struggle is science teacher concerns and hesitation associated with incorporating social dimensions of the issues into their instruction (Friedrichsen et al., 2021).

Author/Presenter

Rebecca Rawson Lesnefsky

Troy Sadler

Li Ke

Pat Friedrichsen

Year
2023
Short Description

The Socioscientific Issues Teaching and Learning (SSI-TL) framework is a guide for developing an instructional approach to learning experiences focused on socioscientific issues (SSI). Despite the potential benefits of SSI learning, teachers often struggle to implement this approach in their classrooms, and one of the most prominent reasons for this struggle is science teacher concerns and hesitation associated with incorporating social dimensions of the issues into their instruction. The purpose of this article is to provide science teacher educators with tools to help teachers better manage the integration of the social dimensions of SSI in issues-based teaching.

Validating the Use of Student-Level Instruments to Examine Preservice Teachers' Mathematical Problem Solving

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Author/Presenter

Timothy D. Folger

Maria Stewart

Jonathan Bostic

Toni A. May

Year
2022
Short Description

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Validating the Use of Student-Level Instruments to Examine Preservice Teachers' Mathematical Problem Solving

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Author/Presenter

Timothy D. Folger

Maria Stewart

Jonathan Bostic

Toni A. May

Year
2022
Short Description

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Validating the Use of Student-Level Instruments to Examine Preservice Teachers' Mathematical Problem Solving

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Author/Presenter

Timothy D. Folger

Maria Stewart

Jonathan Bostic

Toni A. May

Year
2022
Short Description

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Validating the Use of Student-Level Instruments to Examine Preservice Teachers' Mathematical Problem Solving

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Author/Presenter

Timothy D. Folger

Maria Stewart

Jonathan Bostic

Toni A. May

Year
2022
Short Description

Problem solving is a central focus of mathematics teaching and learning. If teachers are expected to support students' problem-solving development, then it reasons that teachers should also be able to solve problems aligned to grade level content standards. The purpose of this validation study is twofold: (1) to present evidence supporting the use of the Problem Solving Measures Grades 3–5 with preservice teachers (PSTs), and (2) to examine PSTs' abilities to solve problems aligned to grades 3–5 academic content standards.

Conceptual Profile of Substance: Representing Heterogeneity of Thinking in Chemistry Classrooms

Teachers face challenges when building the concept of substance with students because tensions of meanings emerge from students’ daily life and canonical ideas developed in classrooms. A powerful tool to address learning, pedagogical, and research challenges is the conceptual profile theory. According to this theory, people employ various ways of conceptualizing the world to signify experiences. Conceptual profiles are models of the heterogeneity of modes of thinking and speaking about a given scientific concept which are used in a variety of contexts.

Author/Presenter

Hannah Sevian

Eduardo F. Mortimer 

Year
2020
Short Description

Teachers face challenges when building the concept of substance with students because tensions of meanings emerge from students’ daily life and canonical ideas developed in classrooms. A powerful tool to address learning, pedagogical, and research challenges is the conceptual profile theory. According to this theory, people employ various ways of conceptualizing the world to signify experiences. Conceptual profiles are models of the heterogeneity of modes of thinking and speaking about a given scientific concept which are used in a variety of contexts. To better understand the heterogeneity of thinking/speaking about substance, the present study aimed to answer: (1) What are the zones that constitute the conceptual profile of substance?; and (2) What ways of thinking and speaking about substance do teachers and students exhibit when engaged in a classroom formative assessment activity?

Impact of the Design of an Asynchronous Video-Based Learning Environment on Teacher Noticing and Mathematical Knowledge

In this paper, we share the design and impact of a set of two-hour online mathematics professional development modules adapted from face-to-face video-based materials. The “Video in the Middle” (VIM) modules are aligned with principles of authentic e-learning and can be combined in a variety of ways to form professional development pathways that meet the unique needs of a wide range of professional learning settings and contexts. VIM modules aim to support teacher noticing of student thinking and increase their mathematical knowledge for teaching.

Author/Presenter

Nanette Seago

Angela Knotts

Lead Organization(s)
Year
2021
Short Description

In this paper, we share the design and impact of a set of two-hour online mathematics professional development modules adapted from face-to-face video-based materials.

Resource(s)

Pedagogical Chemistry Sensemaking: A Novel Conceptual Framework to Facilitate Pedagogical Sensemaking in Model-based Lesson Planning

Researchers have typically identified and characterized teachers’ knowledge bases (e.g., pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases.

Author/Presenter

Meng-Yang M. Wu

Ellen J. Yezierski

Lead Organization(s)
Year
2022
Short Description

Researchers have typically identified and characterized teachers’ knowledge bases (e.g., pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense).

Exploring Adaptations of the VisChem Approach: Advancements and Anchors toward Particle-Level Explanations

The Next Generation Science Standards (NGSS) have been imperative for informing many facets of the chemistry education research field, one of which includes the professional development (PD) of high school teachers. While many researchers and practitioners have responded to the NGSS’ calls for reform by attending to internal factors that influence the PD’s design, resources, and facilitation, there is less attention on extant factors that may negatively affect PD uptake and fidelity.

Author/Presenter

Meng-Yang Matthew Wu

Ellen J. Yezierski

Lead Organization(s)
Year
2022
Short Description

The Next Generation Science Standards (NGSS) have been imperative for informing many facets of the chemistry education research field, one of which includes the professional development (PD) of high school teachers. While many researchers and practitioners have responded to the NGSS’ calls for reform by attending to internal factors that influence the PD’s design, resources, and facilitation, there is less attention on extant factors that may negatively affect PD uptake and fidelity. Such factors encompass traditions of teaching chemistry or chemistry-related imprecisions within the NGSS themselves. If left unaddressed, these factors can act as anchors preventing advancements toward students’ particle-level explanations and their chemistry conceptual understanding. In this article, we investigate the uptake and fidelity of our own PD program known as the VisChem Institute.