Other

Creating Inclusive PreK–12 STEM Learning Environments

Brief CoverBroadening participation in PreK–12 STEM provides ALL students with STEM learning experiences that can prepare them for civic life and the workforce.

Author/Presenter

Malcom Butler

Cory Buxton

Odis Johnson Jr.

Leanne Ketterlin-Geller

Catherine McCulloch

Natalie Nielsen

Arthur Powell

Year
2018
Short Description

This brief offers insights from National Science Foundation-supported research for education leaders and policymakers who are broadening participation in science, technology, engineering, and/or mathematics (STEM). Many of these insights confirm knowledge that has been reported in research literature; however, some offer a different perspective on familiar challenges.

Navigating Policy and Local Context in Times of Crisis: District and School Leader Responses to the COVID-19 Pandemic

Purpose: To examine how federal/state-level policy guidance and local context have influenced district and school leader responses to the COVID-19 pandemic, as well as how these external/internal factors might provide a window into K-12 crisis leadership and policy sensemaking more broadly.

Author/Presenter

Craig De Voto

Benjamin M. Superfine

Marc DeWit

Year
2023
Short Description

This article examines how federal/state-level policy guidance and local context have influenced district and school leader responses to the COVID-19 pandemic, as well as how these external/internal factors might provide a window into K-12 crisis leadership and policy sensemaking more broadly.

The Crisis You Can’t Plan For: K-12 Leader Responses and Organisational Preparedness During COVID-19

Unlike many types of educational crises, the COVID-19 pandemic was a crisis leaders could not have prepared for. But research is only starting to examine how leaders’ responses and organisational context have played a role. This mixed-methods study accordingly examines how leaders have mitigated challenges presented by the COVID-19 pandemic, and what local factors are most salient.

Author/Presenter

Craig De Voto

Benjamin M. Superfine

Year
2023
Short Description

Unlike many types of educational crises, the COVID-19 pandemic was a crisis leaders could not have prepared for. But research is only starting to examine how leaders’ responses and organisational context have played a role. This mixed-methods study accordingly examines how leaders have mitigated challenges presented by the COVID-19 pandemic, and what local factors are most salient.

Justice-Centered STEM Education with Multilingual Learners: Conceptual Framework and Initial Inquiry into Pre-service Teachers’ Sense-Making

When pressing societal challenges (e.g., COVID-19, access to clean water) are sidelined in science classrooms, science education fails to leverage the knowledge and experiences of minoritized students in school, thus reproducing injustices in society. Our conceptual framework for justice-centered STEM education engages all students in multiple STEM subjects, including data science and computer science, to explain and design solutions to pressing societal challenges and their disproportionate impact on minoritized groups.

Author/Presenter

Scott E. Grapin

Alison Haas

N’Dyah McCoy

Okhee Lee

Year
2023
Short Description

Our conceptual framework for justice-centered STEM education engages all students in multiple STEM subjects, including data science and computer science, to explain and design solutions to pressing societal challenges and their disproportionate impact on minoritized groups. In the first part of this article, we extend our conceptual framework by articulating the affordances of justice-centered STEM education for one minoritized student group that has been traditionally denied meaningful STEM learning experiences: multilingual learners (MLs). In the second part of the article, we report on an initial inquiry into how 14 undergraduate pre-service teachers made sense of our conceptual framework after participating in lessons from our COVID-19 instructional unit.

Comparing Optimization Practices Across Engineering Learning Contexts Using Process Data

Despite an increasing focus on integrating engineering design in K-12 settings, relatively few studies have investigated how to support students to engage in systematic processes to optimize the designs of their solutions. Emerging learning technologies such as computational models and simulations enable rapid feedback to learners about their design performance, as well as the ability to research how students may or may not be using systematic approaches to the optimization of their designs.

Author/Presenter

James P. Bywater

Tugba Karabiyik

Alejandra Magana

Corey Schimpf

Ying Ying Seah 

Year
2023
Short Description

Despite an increasing focus on integrating engineering design in K-12 settings, relatively few studies have investigated how to support students to engage in systematic processes to optimize the designs of their solutions. This study explored how middle school, high school, and pre-service students optimized the design of a home for energy efficiency, size, and cost using facets of fluency, flexibility, closeness, and quality.

Comparing Optimization Practices Across Engineering Learning Contexts Using Process Data

Despite an increasing focus on integrating engineering design in K-12 settings, relatively few studies have investigated how to support students to engage in systematic processes to optimize the designs of their solutions. Emerging learning technologies such as computational models and simulations enable rapid feedback to learners about their design performance, as well as the ability to research how students may or may not be using systematic approaches to the optimization of their designs.

Author/Presenter

James P. Bywater

Tugba Karabiyik

Alejandra Magana

Corey Schimpf

Ying Ying Seah 

Year
2023
Short Description

Despite an increasing focus on integrating engineering design in K-12 settings, relatively few studies have investigated how to support students to engage in systematic processes to optimize the designs of their solutions. This study explored how middle school, high school, and pre-service students optimized the design of a home for energy efficiency, size, and cost using facets of fluency, flexibility, closeness, and quality.

A Model Comparison Approach to Posterior Predictive Model Checks in Bayesian Confirmatory Factor Analysis

Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by comparing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates.

Author/Presenter

Jonathan Templin

Catherine E. Mintz

Lead Organization(s)
Year
2022
Short Description

Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by comparing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates. We propose a new method of PPMC based on comparing posterior predictive distributions of a hypothesized and saturated BCFA model.

A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models

Diagnostic classification models (DCMs) are restricted latent class models with a set of cross-class equality constraints and additional monotonicity constraints on their item parameters, both of which are needed to ensure the meaning of classes and model parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian Markov chain Monte Carlo estimation method for general DCMs with monotonicity constraints. A simulation study was conducted to evaluate parameter recovery of the algorithm which showed accurate estimation of model parameters.

Author/Presenter

Kazuhiro Yamaguchi

Jonathan Templin 

Lead Organization(s)
Year
2021
Short Description

Diagnostic classification models (DCMs) are restricted latent class models with a set of cross-class equality constraints and additional monotonicity constraints on their item parameters, both of which are needed to ensure the meaning of classes and model parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian Markov chain Monte Carlo estimation method for general DCMs with monotonicity constraints.

The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models

The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated factors in the simulation included the sample size (11 different sample sizes from 100 to 5000), test length (10, 30, and 50), number of classes (2 and 3), the degree of latent class separation (normal/no separation, small, medium, and large), and class sizes (equal vs. nonequal).

Author/Presenter

Sedat Sen

Allan S. Cohen

Lead Organization(s)
Year
2022
Short Description

The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL.

Investigating Teachers’ Understanding Through Topic Modeling: A Promising Approach to Studying Teachers’ Knowledge

Examining teachers’ knowledge on a large scale involves addressing substantial measurement and logistical issues; thus, existing teacher knowledge assessments have mainly consisted of selected-response items because of their ease of scoring. Although open-ended responses could capture a more complex understanding of and provide further insights into teachers’ thinking, scoring these responses is expensive and time consuming, which limits their use in large-scale studies.

Author/Presenter

Yasemin Copur-Gencturk

Hye-Jeong Choi

Alan Cohen

Year
2022
Short Description

Examining teachers’ knowledge on a large scale involves addressing substantial measurement and logistical issues; thus, existing teacher knowledge assessments have mainly consisted of selected-response items because of their ease of scoring. Although open-ended responses could capture a more complex understanding of and provide further insights into teachers’ thinking, scoring these responses is expensive and time consuming, which limits their use in large-scale studies. In this study, we investigated whether a novel statistical approach, topic modeling, could be used to score teachers’ open-ended responses and if so, whether these scores would capture nuances of teachers’ understanding.