Curriculum

Focus on Energy Curriculum

Three short (4-5 session) curriculum units and an engineering design challenge include firsthand, guided explorations of energy in everyday phenomena. Beginning with easily observable phenomena, such as ball collisions, students look for signs of energy, create and use a variety of representations including "energy cubes," and discuss questions and findings. They develop the practice of asking, "Where does the energy come from?" and "Where does the energy go?" and learn to track the flow of energy in increasingly complex scenarios.

Author/Presenter

The Focus on Energy Team

Lead Organization(s)
Year
2016
Short Description

Three short (4-5 session) curriculum units and an engineering design challenge include firsthand, guided explorations of energy in everyday phenomena. Beginning with easily observable phenomena, such as ball collisions, students look for signs of energy, create and use a variety of representations including "energy cubes," and discuss questions and findings. They develop the practice of asking, "Where does the energy come from?" and "Where does the energy go?" and learn to track the flow of energy in increasingly complex scenarios.

SAIL Garbage Unit

School, home, and neighborhoods make large amounts of garbage every day. In answering the driving question of the unit, “What happens to our garbage?”, students investigate a series of subquestions (e.g., “What is that smell?” and “What causes changes in the properties of garbage materials?”) that address a targeted set of physical science and life science performance expectations. Over nine weeks of instruction, students develop a coherent understanding of the structure and properties of matter to make sense of the anchoring phenomenon and to answer the driving question.

Author/Presenter

The SAIL Team

Lead Organization(s)
Year
2019
Short Description

School, home, and neighborhoods make large amounts of garbage every day. In answering the driving question of the unit, “What happens to our garbage?”, students investigate a series of subquestions (e.g., “What is that smell?” and “What causes changes in the properties of garbage materials?”) that address a targeted set of physical science and life science performance expectations. This unit was developed with a specific focus on English learners by using an engaging, local phenomenon and design principles that capitalize on the mutually supportive nature of science and language learning.

SAIL Garbage Unit

School, home, and neighborhoods make large amounts of garbage every day. In answering the driving question of the unit, “What happens to our garbage?”, students investigate a series of subquestions (e.g., “What is that smell?” and “What causes changes in the properties of garbage materials?”) that address a targeted set of physical science and life science performance expectations. Over nine weeks of instruction, students develop a coherent understanding of the structure and properties of matter to make sense of the anchoring phenomenon and to answer the driving question.

Author/Presenter

The SAIL Team

Lead Organization(s)
Year
2019
Short Description

School, home, and neighborhoods make large amounts of garbage every day. In answering the driving question of the unit, “What happens to our garbage?”, students investigate a series of subquestions (e.g., “What is that smell?” and “What causes changes in the properties of garbage materials?”) that address a targeted set of physical science and life science performance expectations. This unit was developed with a specific focus on English learners by using an engaging, local phenomenon and design principles that capitalize on the mutually supportive nature of science and language learning.

Design Technology and Engineering Education (DTEEL) Curriculum

Design Technology and Engineering Education (DTEEL) for bilingual English Learner Students is a K-5th grade curriculum focused on language development through engineering design and problem solving. Each grade level includes a series of units focused on different aspects of engineering: Materials, Structures, Mechanisms, and Work & Energy. The last two grade levels add units that synthesize these engineering components with a Systems focus on Systems. Each lesson includes instructional strategies to strategically integrate language use and engineering content.

Author/Presenter

The DTEEL Team

Lead Organization(s)
Year
2018
Short Description

Design Technology and Engineering Education (DTEEL) for bilingual English Learner Students is a K-5th grade curriculum focused on language development through engineering design and problem solving. Each grade level includes a series of units focused on different aspects of engineering: Materials, Structures, Mechanisms, and Work & Energy. The last two grade levels add units that synthesize these engineering components with a Systems focus on Systems. Each lesson includes instructional strategies to strategically integrate language use and engineering content.

Journey to El Yunque Curriculum

The Journey to El Yunque curriculum introduces students to disturbance ecology, with a focus on both ecosystem resilience and ecosystem change. Each page is beautifully illustrated by Puerto Rican artist Robert Casilla to connect students with Puerto Rican culture as well as help generate curiosity and interest as students move through the curriculum. Students use interactive models to explore how limiting factors, such as the availability of food or shelter, impact the population dynamics of different species following a hurricane.

Author/Presenter

The Journey to El Yunque Team

Lead Organization(s)
Year
2016
Short Description

The Journey to El Yunque curriculum introduces students to disturbance ecology, with a focus on both ecosystem resilience and ecosystem change. Each page is beautifully illustrated by Puerto Rican artist Robert Casilla to connect students with Puerto Rican culture as well as help generate curiosity and interest as students move through the curriculum. Students use interactive models to explore how limiting factors, such as the availability of food or shelter, impact the population dynamics of different species following a hurricane. Students engage with interactive models of population dynamics that are based on real-world data gathered by our partners at the Luquillo Long-Term Ecological Research program in Puerto Rico. The data from these models serve as evidence for students’ scientific arguments about the impact of hurricanes on specific species in the rainforest. (Teacher materials can be requested from demo@elyunque.net)

Young Mathematicians Math Games

Fun and easy to use math games designed for children ages 3 to 6-years-old. Some games are quick and use everyday materials; others use a game board for more extended play. All of the games can be played multiple times and their difficulty can be increased or decreased to target a “just right” level of challenge for children as they gain proficiency.

Author/Presenter

The YM Team

Year
2021
Short Description

Fun and easy to use math games designed for children ages 3 to 6-years-old. Some games are quick and use everyday materials; others use a game board for more extended play. All of the games can be played multiple times and their difficulty can be increased or decreased to target a “just right” level of challenge for children as they gain proficiency.

Sensing Science Apps

Sensing Science has created several free educational apps for iPads to build conceptual understanding of matter and its changes in kindergarten students. Related resources and support materials are available.

Author/Presenter

The Sensing Science Team

Lead Organization(s)
Year
2020
Short Description

Sensing Science has created several free educational apps for iPads to build conceptual understanding of matter and its changes in kindergarten students. Related resources and support materials are available.

InquirySpace Investigations

A set of NGSS-aligned investigations for each discipline (physics, chemistry, biology) designed to introduce and scaffold engagement in science practices and build an understanding of the interplay between experimental design, data collection, analysis, and explanation.

Author/Presenter

The InquirySpace Team

Lead Organization(s)
Year
2021
Short Description

A set of NGSS-aligned investigations for each discipline (physics, chemistry, biology) designed to introduce and scaffold engagement in science practices and build an understanding of the interplay between experimental design, data collection, analysis, and explanation. In the process of investigating their world, students generate data using traditional lab tools, sensors, and simulations, then bring their data into our Common Online Data Analysis Platform (CODAP), which was developed specifically to facilitate sensemaking with data.

Connected Biology

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Author/Presenter

The Connected Biology Team

Year
2018
Short Description

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Connected Biology

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.

Author/Presenter

The Connected Biology Team

Year
2018
Short Description

Connected Biology provides a sequence of lessons for high school biology that fosters integrated learning of genetics and evolution. This novel curriculum is aligned with Next Generation Science Standards (NGSS) performance expectations and supports students’ development of a model of the relationships between molecules, cells, organisms, and populations. The curriculum package includes online lessons, an interactive Teacher’s Edition, and a real-time Teacher Dashboard. Additional background materials and supplemental resources are also provided.