Curriculum

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Passmore and Wilson)

Principal Investigator:

We are collaborating on a project to examine the efficacy of high school biology instructional materials that support teachers' understanding and practice of model-based reasoning as an approach to support students in developing an integrated, multidimensional understanding of science. This poster summarizes our efforts to develop assessment tasks that measure students' ability to use model-based reasoning to make sense of biological phenomena and describes our use of crowdsourced adults to pilot test the tasks.

Co-PI(s): Molly Stuhlsatz, BSCS Science Learning

Click image to preview:

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Passmore and Wilson)

Principal Investigator:

We are collaborating on a project to examine the efficacy of high school biology instructional materials that support teachers' understanding and practice of model-based reasoning as an approach to support students in developing an integrated, multidimensional understanding of science. This poster summarizes our efforts to develop assessment tasks that measure students' ability to use model-based reasoning to make sense of biological phenomena and describes our use of crowdsourced adults to pilot test the tasks.

Co-PI(s): Molly Stuhlsatz, BSCS Science Learning

Click image to preview:

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Murray and Wilson)

Principal Investigator:

Analyzing Instruction in Mathematics using the TRU framework (AIM-TRU) is a research-practice partnership that is investigating the pressing problem of supporting teachers in increasing their capacity to implement high-quality instructional materials in the classroom with fidelity. Drawing upon the design-based research paradigm, the partnership has worked to co-design, investigate, and iteratively form the AIM-TRU Learning Cycle, which gives teachers the opportunity to understand the materials and how they are used in the classroom through a video-based professional learning cycle.

Click image to preview:
Target Audience:

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

Principal Investigator:

We are studying how an online professional learning experience for K-12 computer science teachers can be adapted for use in the classroom. Our goal is to increase teachers' conceptual and creative fluency with the Scratch programming environment. In collaboration with several teachers, we further refined our online professional learning experience for summer 2020. We have also been collaboratively developing and studying educative curriculum materials that promote both teacher and student learning and development.

Click image to preview:
Target Audience:

Preparing Next Generation Scientists Through Teacher and Extension Science Partnerships and Schoolyard Citizen Science Investigations in Elementary Schools

Principal Investigator:

Research shows a need for professional development (PD) that builds K-5 teachers' ability to incorporate the Next Generation Science Standards (NGSS) science practices into the classroom and supports their implementation of reform-minded science instruction. The Schoolyard SITES research study and PD program at the University of New Hampshire (UNH) partners elementary teachers with UNH Extension science volunteers to bring locally-relevant citizen science projects to elementary students and to increase teachers’ self-efficacy teaching science.

Click image to preview:
Target Audience:

Integrating Science with Mathematics and Engineering: Linking Home and School Learning for All Young Learners

Principal Investigator:

This study investigates the integration of early science with mathematics and engineering and involves co-designing resources with preschool teachers and families from historically underserved communities to provide preschool children equitable STEM learning experiences. The study also explores connections between home and school learning and involves designing resources to support multilingual learners, who represent a large (and growing) proportion of the population served in public preschool programs.

Click image to preview:
Target Audience:

Incorporating Professional Science Writing into High School STEM Research Projects

Principal Investigator:
Description: Reading, writing, revision and even publication are integral to progressing science. Yet, these skills are not emphasized in the typical high school STEM classroom. This project investigates the experiences and outcomes of secondary students who have participated in the peer-review and publication of their STEM research projects. Overall, students report increased understanding of the role of writing and publication within science, and they express higher levels of self-efficacy, confidence and identity in STEM.
Click image to preview:
Target Audience:

Exploratory Evidence on the Factors that Relate to Elementary School Science Learning Gains Among English Language Learners

Principal Investigator:

This study provides evidence on the confluence of school, classroom, teacher, and student inputs that shape elementary school science learning for English learners. The study explores the relationship between (1) science inputs (time on science, content covered, availability of lab resources, teacher training in science instruction, etc.), and (2) EL-specific inputs (classroom language use, EL instructional models, teacher certification/training, availability of EL support staff, etc.) for a nationally representative set of kindergarten through fifth graders.

Click image to preview:
Target Audience:

Developing Preservice Elementary Teachers' Ability to Facilitate Goal-Oriented Discussions in Science and Mathematics via the Use of Simulated Classroom Interactions

Principal Investigator:

In this project, we developed, piloted, and studied the use of a set of performance-based tasks delivered within a simulated classroom environment in order to improve preservice elementary teachers' ability to facilitate argumentation-focused discussions in mathematics and science. We conceptualized these simulated discussions as formative assessment opportunities, and studied how teacher educators made use of them within methods courses to support preservice teachers' learning. We also examined evidence of preservice teacher learning via pre/post measures.

Click image to preview:
Target Audience:

Developing Learning Environments that Support Molecular-Level Sensemaking

Principal Investigator:

Our team works with high school chemistry teachers to co-develop a suite of curricular materials that engage students in making sense of chemical phenomena in terms of atomic/molecular behavior. This suite of materials undergoes a regular cycle of development and refinement, guided by teachers’ sense of “what works” when implementing the materials and observations of classroom discourse practices. Our work investigates how to best support teachers as they design learning environments to promote student sensemaking.

Click image to preview:
Discipline/Topic:
Target Audience: