Early State/Exploratory

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

CAREER: Investigating Fifth Grade Teachers' Knowledge of Noticing Appalachian Students' Thinking in Science

This project will investigate teachers' knowledge of noticing students' science thinking. The project will examine teacher noticing in practice, use empirical evidence to model the teacher knowledge involved, and design teacher learning materials informed by the model. The outcomes of this project will be a model of teachers' knowledge of noticing Appalachian students' thinking in science and the design of web-based interactive instructional materials supporting teachers' knowledge construction around noticing Appalachian students' thinking in science.

Award Number: 
1552428
Funding Period: 
Fri, 07/01/2016 to Wed, 06/30/2021
Full Description: 

Based on findings from research on effective science teaching supporting the notion that meaningful learning occurs when teachers attend to students' thinking, this project will conduct an in-depth investigation of teachers' knowledge of noticing students' science thinking in terms of what they do and say, to not only attend to their ideas, but also to make sense of and respond to those ideas. The work will be grounded on the premise that there is a relationship between teachers' practice and knowledge, and that it is possible to observe practice in order to infer knowledge. The project will examine teacher noticing in practice, use empirical evidence to model the specialized teacher knowledge involved, and design teacher learning materials informed by the model. The setting of the study will include an existing school-university partnership serving diverse student populations in Appalachian communities, where students significantly underperform nationally in Science, Technology, Engineering, and Mathematics areas across grades levels. It will target fifth grade science teachers' noticing their students' thinking as they engage in science learning in six rural and semi-rural elementary schools.

The three research questions will be: (1) What disciplinary ideas in students' thinking do elementary teachers notice in practice?; (2) What knowledge do elementary teachers draw on when noticing the disciplinary ideas in students' thinking in practice?; and (3) How does a set of web-based interactive instructional materials support teachers' knowledge construction around noticing the disciplinary ideas in students' thinking in science? In order to investigate teachers' noticing students' thinking, and answer the research questions, the project will use two wearable technologies to collect data of teachers' "in-the-moment" noticing while engaged in planning, instructional, and assessment activities. One is a point-of-view digital video system consisting of three parts: a small video camera, a hand-held remote, and a separate recording module. The other is an audio-recording wristband with a recording mode allowing the user to capture previous one-minute loops of audio data. An audio loop is saved whenever the user taps the wristband. Data will be analyzed for evidence of students' disciplinary knowledge and skills in order to give insight of teachers' knowledge involved in noticing each instance using the three interconnected dimensions featured in "A Framework for K-12 Science Education" (National Research Council, 2012). The project will consist of four strands of work: (1) empirically investigating teachers' noticing of students' thinking; (2) developing an initial conceptual model of teachers' knowledge of noticing students' thinking; (3) conducting design-based research to develop instructional materials supporting teachers' knowledge construction around noticing students' thinking in science; and (4) producing and disseminating these instructional materials through an interactive web-based platform. The main outcomes of this project will be (a) an empirically grounded model of fifth grade teachers' knowledge of noticing Appalachian students' thinking in science; and (b) the design of web-based interactive instructional materials supporting fifth grade teachers' knowledge construction around noticing Appalachian students' thinking in science. These outcomes will serve as the foundation for a more comprehensive future research agenda testing and refining the initial model and instructional materials in other learning environments in order to eventually contribute to a practice-based theory of teachers' knowledge of noticing students' thinking in science to inform and impact science teaching practice. An advisory board will oversee the project's progress, and an external evaluator will conduct both formative and summative evaluation.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards

This project will conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level which is aligned with the Next Generation Science Standards (NGSS).

Award Number: 
1551143
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards is an exploratory project to conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level. Research and Curriculum Development team consisting of master elementary science teachers, university professors including science, engineering, and science teacher education faculty, and a science education post doc or graduate student will engage in developing the Next Generation Science Standards (NGSS) aligned curricula integrating science, engineering, and language arts, and publishing STEM education research. The importance of this project will be the development of curricula integrating science, engineering, and language arts at the elementary level. Lesson plans or teaching activities in the integrated curricula will be written in practitioner article format. In the NGSS the engineering design is raised to the same level as scientific inquiry and included as a vital element of science education. This integrated approach aims to provide three-dimensional learning experience as specified in the NGSS to elementary students while meaningfully integrating engineering, science, reading, and writing through real life engineering design problems. The NGSS aligned curricula that will be developed in this project can also be used in other states that adopted the NGSS.

An Integrated curriculum for grades 1-2 will be developed in year 1. In year 2, the project will develop a curriculum for grades 3-5. Each year, the project will develop and field-test a new curriculum, and provide professional development organized around the integrated curriculum to 20 elementary teachers at the Clark County School District in Las Vegas, Nevada.

Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics

This project will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. 

Lead Organization(s): 
Award Number: 
1503451
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The 3-year exploratory project, Conceptual Model-based Problem Solving: A Response to Intervention Program for Students with Learning Difficulties in Mathematics, will develop a cross-platform mathematics tutoring program that addresses the problem-solving skill difficulties of second- and third-grade students with learning disabilities in mathematics (LDM). While mathematics problem-solving skills are critical in all areas of daily life, many students with LDM do not acquire key math concepts such as additive and multiplicative reasoning in a proficient manner during the early school years. In fact, about 5-10% of school-age children are identified as having mathematical disabilities which might cause them to experience considerable difficulties in the upper grades and experience persistent academic, life, and work challenges. Despite the proliferation of web-based mathematical games for early learners, there are very few programs or tools that target growth in the conceptual understanding of fundamental mathematical ideas, which is essential in enabling young students with LDM to perform proficiently in mathematical and everyday contexts. COMPS-A is a computer-generated instructional program focusing on additive word problem solving; it will provide tutoring specifically tailored to each individual student's learning profile in real time. COMPS-A will also make the reasoning and underlying mathematical model more explicit to them, and the tool's flexibility will facilitate group or one-on-one instruction in regular classroom settings, in other sessions during or after the school day, and at home. COMPS-A addresses a significant practical issue in today's classrooms by providing individualized and effective RtI intervention programs for students with LDM.

COMPS-A program represents a mathematical model-based problem-solving approach that emphasizes understanding and representation of mathematical relations in algebraic equations and, thus, will support growth in generalized problem-solving skills.COMPS-A will achieve the following objectives: 1) Create the curriculum content, screen design, and a teacher's manual for all four modules in the area of additive word problem solving; 2) Design and develop the cross-platform computer application that can be ported as a web-based, iPad, Android, or Windows app, and this flexibility will make the program accessible to all students; and 3) Conduct small-scale single subject design and randomized controlled trial studies to evaluate the potential of COMPS-A to enhance students' word problem-solving performance. The following research questions will be resolved: (1) What is the functional relationship between the COMPS-A program and students' performance in additive mathematics problem solving? (2) What is the teacher's role in identifying students' misconceptions, alternative reasoning, and knowledge gaps when students are not responsive to the intervention program? (3) What are the necessary instructional scaffolds that will address students' knowledge gaps and therefore facilitate the connection between students' conceptual schemes and the mathematical models necessary for problem solving in order to promote meaningful understanding and construction of additive reasoning? A functional prototype of the COMPS-A will be developed followed by a single-subject design study with a small group of students with LDM to field-test the initial program. Finally, a pretest-posttest, comparison group design with random assignment of participants to groups will then be used to examine the effects of the two intervention conditions: COMPS-A and business as usual. An extensive dissemination plan will enable the project team to share results to a wider community that is responsible for educating all students and, especially, students with LDM.

 

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Fri, 07/31/2020
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.


Project Videos

2019 STEM for All Video Showcase

Title: Designing PD for Math Educators of Students Who are ELs

Presenter(s): Peter Tierney-Fife, Pamela Buffington, Josephine Louie, Jill Neumayer Depiper, & Johannah Nikula

2016 STEM for All Video Showcase

Title: Visual Access to Mathematics: Supporting Teachers of ELs

Presenter(s): Johannah Nikula, Pam Buffington, Mark Driscoll & Peter Tierney-Fife


Strengthening the Quality, Design and Usability of Simulations as Assessments of Teaching Practice

Ensuring that beginning teachers are "classroom-ready" requires assessments that efficiently and validly evaluate proficiency in teaching. This project explores assessments involving simulated students as a way to assess teaching practice, which could provide an important complement, or alternative, to directly assessing teaching practice in classrooms.

Lead Organization(s): 
Award Number: 
1502711
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

Ensuring that beginning teachers are "classroom-ready" requires assessments that efficiently and validly evaluate proficiency in teaching. This project explores assessments involving simulated students as a way to assess teaching practice, which could provide an important complement, or alternative, to directly assessing teaching practice in classrooms. This form of assessment has the potential to provide a way to avoid onerous expense, logistics, and other difficulties of assessments happening in classrooms. The project will address questions about the development of performance expectations for elementary mathematics teachers, the extent to which the performance of the "student" role can be standardized across different performance contexts, and different approaches for generating teaching scenarios. The assessments will focus on the teaching practices of eliciting and interpreting students' mathematical thinking. The project will support: (1) establishing the validity of the assessment as a means to assess readiness to teach elementary mathematics and (2) providing the necessary foundation for scaling research and the use of simulation assessments. 

The goal of this project is generating, calibrating, and studying standardized simulations of clinical performance of mathematics teaching. The strategy is to investigate three components of the simulation assessment that will enable its broader use in the field. One component will focus on approaches that use different foundations (wisdom of practice, interactions with children, and learning trajectories research) for the design of simulations that are authentic and provide robust information about teaching. Data on the ways in which each approach supplies resources needed for assessment development will be compared. Another component will focus on the degree to which the role of the student can be standardized given the dynamics of teaching. Data on the responses of standardized students, who have similar initial training, to different situational categories will be analyzed. A final component will be establishing a basis for calibrating performance expectations for simulations linked to key points in a teacher's career trajectory (early career teachers, experienced teachers, "accomplished" teachers). Data on the performance of teachers at different points in their careers on the same assessment simulations will be compared. This study of components impacting assessment design will result in a more robust foundation for further development of, and further research on, teaching simulation assessments. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-Rich Investigations for NGSS Teaching (SPRINT)

This is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning.

Lead Organization(s): 
Award Number: 
1503153
Funding Period: 
Mon, 06/01/2015 to Wed, 05/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.


Project Videos

2019 STEM for All Video Showcase

Title: Immersed in Phenomena: Helping Teachers Transition to NGSS

Presenter(s): Julie Yu, Sara Heredia, & Jessica Parker


Design Technology and Engineering Education for English Learner Students: Project DTEEL

One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

Lead Organization(s): 
Award Number: 
1503428
Funding Period: 
Mon, 06/01/2015 to Thu, 05/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills. 

The project's cross-disciplinary approach is grounded in both inquiry-based science education research and bilingual cognition research. These complementary foci bridge research areas to highlight how engineering experiences for students can capitalize on bilingual students' experiences as problem solvers. The project will develop teachers' ability and instructional efficacy for both STEM and bilingual student instruction. The project adapts a previously developed curriculum for engineering education by adding resources and tools to support bilingual students. The research design primarily measures teacher-level phenomenon such as implementation of instructional strategies, STEM self-efficacy and ability to address the academic development of bilingual students through engineering design activities. Data collected include classroom observations, teacher surveys, focus groups, and teacher interviews. Student assessments will be piloted in the final year of the project.

Pages

Subscribe to Early State/Exploratory