Projects

09/01/2013

This is a 2-day conference that will examine current strategies, issues and future challenges related to teacher professional development regarding integrating inquiry-oriented science instruction and English Language Development (ELD) for K-5 students. The conference convenes 40 researchers and professional development practitioners who examine theory and practice in inquiry-based science instruction and ELD.

08/15/2013

This is a three-day conference designed to support the development and use of K-12 formative and summative assessments aligned with the Framework for K-12 Science Education (NRC, 2012).

08/01/2018

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

08/01/2019

This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.

08/01/2020

The purposes of this conference are to organize scholarly work about equity in science education and to broaden the set of scholars in science education who have equity as a focus.

03/01/2004

Project staff are developing a two-year integrated science course for grades 9–10. The Science and Global Issues course includes a complete year of new material, along with a major revision to the Science and Sustainability high school course. This two-year sequence will complete the SEPUP sequence for grades 6–10. When these courses are published, they will provide the equivalent of a year-long biology course and a semester each of chemistry and physics.

09/01/2014

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

08/01/2019

This project's approach uses two types of embodied performances: experiential performances that engage learners in using their bodies to physically experience scientific phenomena (e.g., the increase of heart rate during exercise), and dramatic performances where learners act out science ideas (e.g., the sources and impact of air pollution) with gestures, body movement, dances, role-plays, or theater productions. The project is adding to the limited science education literature on the use, value, and impact of embodied performances in science classrooms, and on the brilliance, ingenuity, and science knowledge that all youth, and particularly historically marginalized young people, have and can further develop in urban school classrooms.

10/01/2009

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

09/01/2008

This project aims to develop, pilot, and evaluate a model of instruction that advances the scientific literacy of high school students by involving them in science journalism, and to develop research tools for assessing scientific literacy and engagement. We view scientific literacy as public understanding of and engagement with science and technology, better enabling people to make informed science-related decisions in their personal lives, and participate in science-related democratic debates in public life.

 

02/01/2022

This study will further the field's understanding of the role that science teachers play in adapting their instruction during a public health crisis, how they address emergent ideas throughout the unfolding of the pandemic, and the impacts that the pandemic has had on science teachers themselves.

09/01/2009

This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).

08/01/2015

This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution.

07/15/2016

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

09/01/2018

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

07/15/2015

Data Nuggets (http://datanuggets.org) are classroom activities, co-designed by scientists and teachers, which give students practice interpreting quantitative information and making claims based on evidence. The goal of this research is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science. 

07/15/2015

The goal of this research is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science. We will adapt the materials to address current science and mathematics standards, including key concepts from  develop a professional development program for teachers, and test the efficacy of the materials through a quasi-experiment.

08/15/2008

This project investigates the potential of online role-playing games for scientific literacy through the iterative design and research of Saving Lake Wingra, an online role-playing game around a controversial development project in an urban area. Saving Lake Wingra positions players as ecologists, department of natural resources officials, or journalists investigating a rash of health problems at a local lake, and then creating and debating solutions.

08/15/2010

This project is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind.

08/01/2011

This project is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures.

08/01/2011

This project is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures. 

08/01/2013

This is a four-year project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language.

10/01/2006

This project is developing research-based science units for 3rd-4th grades in life, earth and physical science. The Seeds/Roots series is an integrated science-literacy instructional program based on a successful NSF-funded proof-of-concept initiative. It builds on revision of units in the Great Explorations in Math and Science Program; but updates and employs a new, multi-modal "Do it, talk it, read it, write it" learning model, with literacy used in the service of science inquiry.

09/01/2007

This project employs sensing technologies to help transform students' physical actions during play into a set of symbolic (computer) representations in a physics simulation and to engage the children in a developmentally appropriate and powerful form of scientific modeling. The students are in grades K–1 at UCLA's elementary school, and the intervention is based on the existing content unit on Force and Motion.

10/01/2016

This project will develop a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.