Students

Storytelling for Mathematics Learning and Engagement

This project will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. The project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.

Award Number: 
2010276
Funding Period: 
Wed, 07/01/2020 to Fri, 06/30/2023
Full Description: 

Mathematics education in the United States has long been challenged by three key issues this project seeks to address: (a) narrow conceptions of mathematics as a discipline (b) the lack of racially/ethnically diverse role models for mathematics in terms of representation in the public imagination, media, and schools; and (c) a paucity of resources for instruction to harness students' early interest and engagement in mathematics across racial and gender groups. One promising way to expose teachers and students to a variety of images and diversity of models of mathematics is to include images of diverse people telling their stories about their doing and knowing of mathematics. Although storytelling is a natural part of human activity and is used extensively in other elementary school subjects like social studies and language arts, it is not usually found in elementary mathematics. As part of this three-year project, the project team will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. Throughout this work, the project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.

This project responds to calls for improved equity and access to rich, rigorous math: to contribute to understanding a more equitable K-12 pedagogy; to disrupt racial inequities in math (and STEM, more broadly) through culturally responsive and inclusive instructional practice; and to enhance teachers' instructional practice. The first phase of the work will involve collecting and curating a set of digital stories told by mathematicians. Then, through two cycles of design and piloting, the project team will work with participating teachers and students to finalize the design of the videos and associated instructional materials. A sample of pilot teachers will be purposefully selected to account for diversity in region, school population, and experience level of teachers. The research team will also design grade-level appropriate research instruments, collect surveys, and conduct interviews to investigate both teachers' and students' conceptions of mathematics, their conceptions of who "belongs" in mathematics, and teachers' instructional practice with the storytelling materials themselves. Their analysis will draw on quantitative and qualitative research methods. For example, they will use narrative inquiry to examine teachers' and students' experiences with the videos. Using the research findings, the project will make available samples of teachers' pedagogical repertoires related to these videos and demonstrate how storytelling can be used as an effective mechanism for mathematics teaching and learning. Products from this project will include a digital database and supporting instructional materials for teachers, school leaders, and professional developers to use. The dissemination of this research will contribute to building models for mathematics education that serve to deepen understanding of mathematics of teachers and students, as well as simultaneously empowering students of all backgrounds, but especially underserved students, to activate and pursue their interests in mathematics.

Geological Construction of Rock Arrangements from Tectonics: Systems Modeling Across Scales

This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.

Lead Organization(s): 
Award Number: 
2006144
Funding Period: 
Thu, 10/01/2020 to Mon, 09/30/2024
Full Description: 

Plate tectonics is the fundamental theory of geology that underlies almost all geological processes, including land and rock formation. However, the geologic processes and immense timeframes involved are often misunderstood. This study will create two curriculum units that use sophisticated simulations designed for students in secondary schools. The simulations will integrate the study of the tectonic system and the rock genesis system. Data from the simulations would be students' sources of evidence. For instance, the Tectonic Rock Explorer would use a sophisticated modeling engine that uses the physics involved in geodynamic data to represent compressional and tensional forces and calculate pressure and temperature in rock forming environments. This project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic. In addition, this study would include work on students with disabilities in earth science classrooms and explore the practices that seem to be particularly useful in helping understand these systems. By working with simulations, the researchers intend to engage students in scientific practices that are more authentic to the ways that geologists work. The researchers will study if and how these simulations and the computer-based tools allow students to observe and manipulate processes that would be may otherwise be inaccessible.

This work follows on from prior work done by the Concord Consortium on simulations of earth systems. The design and development progression in Years 1 and 2 would create two units. The first module focuses on the relationship between tectonic movement and rock formation. The second would investigate geochronology and dating of rock formations. The researchers would work with 3 teachers (and classes), and then 15 teachers (and classes) using automated data logs, class observations, and video of students working in groups in Years 1 and 2. Professional development for teachers would be followed by the creation of educative materials. Researchers will also develop the framework for an assessment tool that includes understanding of geologic terms and embedded assessments. The researchers will used a mixed methods approach to analyze student data, including analyses cycles of analysis of students pre- and post-test scores on targeted concepts, reports of student performances on tasks embedded in the simulations, and the coding of videos to analyze discourse between partners and the supports provided by teachers. Teacher data will be analyzed using interviews, surveys and journals, with some special focus on how they are seeing students with identified disabilities respond to the materials and simulations. The research team intends to make materials widely available to thousands of students through their networks and webpages, and pursue outreach and dissemination in scholarly and practitioner conferences and publications.

How Deep Structural Modeling Supports Learning with Big Ideas in Biology (Collaborative Research: Capps)

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010223
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. This need is forcefully advanced by policy leaders including the National Research Council and the College Board. They point out that learning is more effective when students organize and link information within a consistent knowledge framework, which is what big ideas should provide. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology. In DSM, students learn a big idea as the underlying, or "deep" structure of a set of examples that contain the structure, but with varying outward details. As learners begin to apprehend the deep structure (i.e., the big idea) within the examples, they use the tools and procedures of scientific modeling to express and develop it. According to theories of learning that undergird DSM, the result of this process should be a big idea that is flexible, meaningful, and easy to express, thus providing an ideal framework for making sense of new information learners encounter (i.e., learning with the big idea). To the extent that this explanation is born out in rigorous research tests and within authentic curriculum materials, it contributes important knowledge about how teaching and learning can be organized around big ideas, and not only for deep structural modeling but for other instructional approaches as well.

This project has twin research and prototype development components. Both are taking place in the context of high school biology, in nine classrooms across three districts, supporting up to 610 students. The work focuses on three design features of DSM: (1) embedding model source materials with intuitive, mechanistic ideas; (2) supporting learners to abstract those ideas as a deep structure shared by a set of sources; and (3) representing this deep structure efficiently within the model. In combination, these features support students to understand an abstract, intuitively rich, and efficient knowledge structure that they subsequently use as a framework to interpret, organize, and link disciplinary content. A series of five research studies build on one another to develop knowledge about whether and how the design features bring about these anticipated effects. Earlier studies in the sequence are small-scale classroom experiments randomly assigning students to either deep structural modeling or to parallel, non modeling controls. Measures discriminate for the anticipated effects during learning and on posttests. Later studies use qualitative methods to carefully trace the anticipated effects over time and across topics. As a group, these studies are contributing generalized knowledge of how learners can effectively abstract and represent big ideas and how these ideas can be leveraged as frameworks for learning content with understanding. Two research-tested biology curriculum prototypes are being developed as the studies evolve: a quarter-year DSM biology curriculum centered on energy; and an eighth-year DSM unit centered on natural selection.

How Deep Structural Modeling Supports Learning with Big Ideas in Biology (Collaborative Research: Shemwell)

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010334
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. This need is forcefully advanced by policy leaders including the National Research Council and the College Board. They point out that learning is more effective when students organize and link information within a consistent knowledge framework, which is what big ideas should provide. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology. In DSM, students learn a big idea as the underlying, or "deep" structure of a set of examples that contain the structure, but with varying outward details. As learners begin to apprehend the deep structure (i.e., the big idea) within the examples, they use the tools and procedures of scientific modeling to express and develop it. According to theories of learning that undergird DSM, the result of this process should be a big idea that is flexible, meaningful, and easy to express, thus providing an ideal framework for making sense of new information learners encounter (i.e., learning with the big idea). To the extent that this explanation is born out in rigorous research tests and within authentic curriculum materials, it contributes important knowledge about how teaching and learning can be organized around big ideas, and not only for deep structural modeling but for other instructional approaches as well.

This project has twin research and prototype development components. Both are taking place in the context of high school biology, in nine classrooms across three districts, supporting up to 610 students. The work focuses on three design features of DSM: (1) embedding model source materials with intuitive, mechanistic ideas; (2) supporting learners to abstract those ideas as a deep structure shared by a set of sources; and (3) representing this deep structure efficiently within the model. In combination, these features support students to understand an abstract, intuitively rich, and efficient knowledge structure that they subsequently use as a framework to interpret, organize, and link disciplinary content. A series of five research studies build on one another to develop knowledge about whether and how the design features bring about these anticipated effects. Earlier studies in the sequence are small-scale classroom experiments randomly assigning students to either deep structural modeling or to parallel, non modeling controls. Measures discriminate for the anticipated effects during learning and on posttests. Later studies use qualitative methods to carefully trace the anticipated effects over time and across topics. As a group, these studies are contributing generalized knowledge of how learners can effectively abstract and represent big ideas and how these ideas can be leveraged as frameworks for learning content with understanding. Two research-tested biology curriculum prototypes are being developed as the studies evolve: a quarter-year DSM biology curriculum centered on energy; and an eighth-year DSM unit centered on natural selection.

Responsive Instruction for Emergent Bilingual Learners in Biology Classrooms

This project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science.

Lead Organization(s): 
Award Number: 
2010153
Funding Period: 
Wed, 07/01/2020 to Fri, 06/30/2023
Full Description: 

The population of students who are emergent bilinguals in the US is not only growing in number but also, historically, has been underrepresented in STEM fields. Emergent bilingual students have not had access to the same high-quality science education as their peers, despite bringing rich academic, linguistic and cultural strengths to their learning. Building on smaller pilot studies and ideas that have shown to be successful in supporting emergent bilingual students' learning of elementary science, this project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science. The collaboration will include two partner districts that will allow the project work to impact about 11,000 high school students and 30 biology teachers in Florida. Over time, the project team plans to enact and study three cohorts of teachers and students; use the information learned to improve the instructional model; and develop lessons, a website, and other materials that can be applied to other contexts to support emergent bilingual students' learning of biology. This project will increase emergent bilingual students' participation in biology classes, improve their achievement and engagement in science and engineering practices, extend current research-based practices, and document how to build on emergent bilingual students' strengths and prior experiences.

In two previous pilot studies through the collaboration of an interdisciplinary team, the project team developed an instructional model that they found supported emergent bilingual students to have high-quality opportunities for science learning. The model builds on research related to culturally responsive instruction; funds of knowledge (including work on identity affirmation and collaboration); and linguistically responsive instruction (including using students' home languages and multiple modalities, and explicit attention to academic language). Using design-based research, the project team will gather data from two primary settings: their professional development program and biology teachers' classrooms. They will use these data both to improve the instructional model and professional development for biology teachers. Additionally, the project team will study how teachers use the model to support emergent bilingual students' biology engagement and achievement, as well as study how biology teachers enact the instructional model in two school districts. The project will work toward three main outcomes: a) to develop new knowledge related to how diverse learners develop language and content knowledge in biology through engaging in science and engineering practices; b) to generate new knowledge about how biology teachers can adapt responsive instruction to local contexts and student populations; and c) to articulate an instructional model for biology teachers of emergent bilingual students that is rigorous, yet practical. The dissemination and sustainability include publishing and presenting findings at a range of conferences and journals; making available the refined instructional framework and professional development materials on a website; communication with district leaders and policymakers; and white papers that can be more widely distributed.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Quintos)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Award Number: 
2010417
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Pinnow)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Lead Organization(s): 
Award Number: 
2010260
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Civil)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Lead Organization(s): 
Award Number: 
2010230
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Place-Based Learning for Elementary Science at Scale (PeBLES2)

To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena.

Award Number: 
2009613
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

This project investigates how to design instructional resources and supporting professional learning that value rigor and standardization while at the same time creating experiences that help students understand their worlds by connecting to local phenomena, communities, and cultures. Currently, many instructional materials designed for widespread use do not connect to local phenomena, while units that do incorporate local phenomena are often developed from the ground up by community members, requiring extensive time and resources.  To support equitable access to place-based science learning opportunities, the Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested units that meet the expectations of the Next Generation Science Standards (NGSS). The project team will develop two units and associated professional learning that could be used in any region across the country with built-in opportunities for teachers to purposefully adapt curriculum to include local phenomena.

A design based research approach will be used to: 1) iteratively design, test, and revise, two locally adaptable instructional resource packages for Grades 3-5 science; 2) examine how teachers apply unit resources and professional learning experiences to incorporate local phenomena into the curriculum and their teaching; and 3) examine how the process of curriculum adaptation can support teacher understanding of the science ideas and phenomena within the units, teacher agency and self-efficacy beliefs in science teaching, and student perceptions of relevance and interest in science learning. Participating teachers will range from rural and urban settings in California, Colorado, and Maine. Data sources will include instructional logs, teacher surveys, and student electronic exit tickets from 50 classrooms per unit as well as teacher interviews, classroom observations, and student focus groups from six exemplar case study teachers per unit. Evaluation of the project will focus on monitoring the (1) quality of the research and development components, (2) quality of program implementation to inform program improvement and future implementation, and (3) potential of scaling up the program to other sites and organizations. The design and research from this project will advance the field’s knowledge about how to design instructional materials and professional learning experiences that meet the expectations of the NGSS while also empowering teachers to adapt materials in productive ways, drawing on locally or culturally relevant phenomena.

 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Pages

Subscribe to Students