Elementary School

SPIRAL: Supporting Professional Inquiry and Re-Aligning Learning through a Structured e-Portfolio System

This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS).

Award Number: 
2010505
Funding Period: 
Thu, 10/01/2020 to Sat, 09/30/2023
Full Description: 

Professional development for science teachers is often restricted to content required for a single grade level or grade band. Consequently, teachers seldom have the opportunity to discuss evidence of how learning occurs as students pass from grade to grade. This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS). The core ideas are designed to spiral over grade levels, with each core idea being revisited with more complexity as students advance from grades K to 8. The electronic portfolio will include images of artifacts such as student work samples and videos that reflect students' evolving thinking and discourse about energy topics. As teachers organize, share, and discuss this progression of evidence in professional learning communities guided by the researchers, the goal is to have a vertical electronic display of artifacts that illustrates how learning can occur. The vertically aligned evidence will help other teachers in the school district to gain an increasingly complex understanding of student learning trajectories across grade levels to improve teaching and learning in science classrooms across the district. The project is innovative because its goal is to move beyond the grade-level collaborations typical of professional development practice and literature, toward multi-grade teams of teachers who engage in complex reflection about spiraling core ideas and scientific practices developed by students over time.

The research questions are: 1.) How does participation in a vertical professional learning community (PLC) influence teachers' knowledge and instruction for teaching disciplinary core ideas through engagement in science practices? 2.) In what ways does professional learning about science teaching and learning differ in a vertical PLC, compared to grade-level PLCs? And 3.) How does the use of an electronic portfolio and feedback system influence teachers' learning from a vertical PLC? The study will first work with K-8 teacher leaders in the Little River Unified School District in California where an electronic portfolio system is already in place due to a prior NSF grant. In the first year, the researchers will add new features to the electronic portfolio system to expand its capabilities. Each teacher would provide a 5-day portfolio of lessons in the fall semester of the first year as a baseline measure of instructional practices. The project will focus on NGSS competencies in developing models and constructing explanations for energy concepts. The researchers will measure progress through teacher interviews, surveys, and lesson plans. Teachers will also collect additional artifacts reflecting student-drawn conceptual models and written or oral causal explanations of anchoring phenomena throughout the assigned units. By the end of the study, teachers will collect new 5-day portfolios, to sum up what they have learned and how they are approaching teaching the energy concepts and science practices. Participating teacher leaders will work with the UCLA research team to design and facilitate a series of professional development modules for all science teachers across grades K-8. These modules will use the evidence in the vertical portfolios to illustrate teaching and learning trajectories across K-8 physical science energy concepts and science.

Supporting Students' Language, Knowledge, and Culture through Science

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

Lead Organization(s): 
Award Number: 
2010633
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The Language, Culture, and Knowledge-building through Science project seeks to explore and positively influence the work of science teachers at the intersection of three significant and ongoing challenges affecting U.S. STEM education. First, U.S. student demographics are rapidly changing, with an increasing number of students learning STEM subjects in their second language. This change means that all teachers need new skills for meeting students where they currently are, linguistically, culturally, and in terms of prior science knowledge. Second, the needs and opportunities of the national STEM workforce are changing rapidly within a shifting employment landscape. This shift means that teachers need to better understand future job opportunities and the knowledge and skills that will be necessary in those careers. Third, academic expectations in schools have changed, driven by changes in education standards. These new expectations mean that teachers need new skills to support all students to master a range of practices that are both conceptual and linguistic. To address these challenges, teachers require new models that bring together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. This project begins with such an initial model, developed collaboratively with science teachers in a prior project. The model will be rigorously tested and refined in a new geographic and demographic context. The outcome will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

This project model starts with three theoretical constructs that have been integrated into an innovative framework of nine practices. These practices guide teachers in how to simultaneously support students' language development, cultural sustenance, and knowledge building through science with a focus on supporting and challenging multilingual learners. The project uses a functional view of language development, which highlights the need to support students in understanding both how and why to make shifts in language use. For example, students' attention will be drawn to differences in language use when they shift from language that is suited to peer negotiation in a lab group to written explanations suitable for a lab report. Moving beyond a funds of knowledge approach to culture, the team view of integrating students' cultural knowledge includes strengthening the role of home knowledge in school, but also guiding students to apply school knowledge to their out-of-school interests and passions. Finally, the project team's view of cumulative knowledge building, informed by work in the sociology of knowledge, highlights the need for teachers and students to understand the norms for meaning making within a given discipline. In the case of science, the three-dimensional learning model in the Next Generation Science Standards makes these disciplinary norms visible and serves as a launching point for the project's work. Teachers will be supported to structure learning opportunities that highlight what is unique about meaning making through science. Using a range of data collection and analysis methods, the project team will study changes in teachers' practices and beliefs related to language, culture and knowledge building, as teachers work with all students, and particularly with multilingual learners. The project work will take place in both classrooms and out of class science learning settings. By working closely over several years with a group of fifty science teachers spread across the state of Oregon, the project team will develop a typology of teachers (design personas) to increase the field's understanding of how to support different teachers, given their own backgrounds, in preparing all students for the broad range of academic and occupational pathways they will encounter.

Supporting Elementary Teacher Learning for Effective School-Based Citizen Science (TL4CS)

This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.

Lead Organization(s): 
Award Number: 
2009212
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Citizen science involves individuals, who are not professional scientists, in authentic scientific research, typically in collaboration with professional scientists. When implemented well in elementary schools, citizen science projects immerse students in science content and engage them with scientific practices. These projects can also create opportunities for students to connect with their local natural surroundings, which is needed, as some research has suggested that children are becoming increasingly detached from nature. The classroom teacher plays a critical role in ensuring that school-based citizen science projects are implemented in a way that maximizes the benefits. However, these projects typically do not include substantial guidance for teachers who want to implement the projects for instructional purposes. This project will develop two forms of support for teachers: (1) guidance embedded in citizen science project materials and (2) teacher professional development. It will develop materials and professional development experiences to support teacher learning for 80 5th grade teachers impacting students in 40 diverse elementary schools.

The overarching goal of this project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making. Specifically, the study is designed to address the following research questions: (1) What kinds of support foster teacher learning for enacting effective school-based citizen science? (2) How do supports for teacher learning shape the way teachers enact school-based citizen science? and (3) What is the potential of school-based citizen science for positively influencing student learning and student attitudes toward nature and science? Data collected during project implementation will include teacher surveys, student surveys and assessments, and case study protocols.

Exploring Early Childhood Teachers' Abilities to Identify Computational Thinking Precursors to Strengthen Computer Science in Classrooms

This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.

Lead Organization(s): 
Award Number: 
2006595
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

Strengthening computer science education is a national priority with special attention to increasing the number of teachers who can deliver computer science education in schools. Yet computer science education lacks the evidence to determine how teachers come to think about computational thinking (a problem-solving process) and how it could be integrated within their day-to-day classroom activities. For teachers of pre-kindergarten to 2nd (PK-2) grades, very little research has specifically addressed teacher learning. This oversight challenges the achievement of an equitable, culturally diverse, computationally empowered society. The project team will design a replicable model of PK-2 teacher professional development in San Marcos, Texas, to address the lack of research in early computer science education. The model will emphasize three aspects of teacher learning: a) exploration of and reflection on computer science and computational thinking skills and practices, b) noticing and naming computer science precursor skills and practices in early childhood learning, and c) collaborative design, implementation and assessment of learning activities aligned with standards across content areas. The project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project includes a two-week computational making and inquiry institute focused on algorithms and data in the context of citizen science and historical storytelling. The project also includes monthly classroom coaching sessions, and teacher meetups.

The research will include two cohorts of 15 PK-2 teachers recruited from the San Marcos Consolidated Independent School District (SMCISD) in years one and two of the project. The project incorporates a 3-phase professional development program to be run in two cycles for each cohort of teachers. Phase one (summer) includes a 2-week Computational Making and Inquiry Institute, phase two (school year) includes classroom observations and teacher meetups and phase three (late spring) includes an advanced computational thinking institute and a community education conference. Research and data collection on impacts will follow a mixed-methods approach based on a grounded theory design to document teachers learning. The mixed-methods approach will enable researchers to triangulate participants' acquisition of new knowledge and skills with their developing abilities to implement learning activities in practice. Data analysis will be ongoing, interweaving qualitative and quantitative methods. Qualitative data, including field notes, observations, interviews, and artifact assessments, will be analyzed by identifying analytical categories and their relationships. Quantitative data includes pre to post surveys administered at three-time points for each cohort. Inter-item correlations and scale reliabilities will be examined, and a repeated measures ANOVA will be used to assess mean change across time for each of five measures. Project results will be communicated via peer-reviewed journals, education newsletters, annual conferences, family and teacher meetups, and community art and culture events, as well as on social media, blogs, and education databases.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Quintos)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Award Number: 
2010417
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Pinnow)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Lead Organization(s): 
Award Number: 
2010260
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Civil)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Lead Organization(s): 
Award Number: 
2010230
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Paving the Way for Fractions: Identifying Foundational Concepts in First Grade (Collaborative Research: Jordan)

The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2000495
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

Although fractions represent a crucial topic in early childhood education, many students develop only a tenuous grasp of fraction concepts, even after several years of fraction instruction that is aligned with current standards. The goal of this project, led by a team of researchers at the University of Delaware and Temple University, is to answer important questions about the informal understandings of fractions young children have before they come to school and what their relations are to fraction learning in more formal instructional settings. Proficiency with fractions dramatically increases the likelihood of students succeeding in math, which in turn increases participation in the STEM workforce. Importantly, large individual differences in fraction understandings are apparent at the start of fractions instruction in the intermediate grades. Early fraction misunderstandings cascade into more severe math weaknesses in later grades, especially when instruction may shift abruptly from whole numbers to fractions. There is a critical need to understand the roots of individual differences that arise before formal instruction takes place. Young children possess important informal fraction understandings before they come to school, but the range of these abilities and their role in formal fraction learning and development is not well understood. The goal of this project is: a) to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes; and b) to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge. The findings from the project hold promise for informing early childhood educators how fractions can be incorporated in the first-grade curriculum in new and meaningful ways. Though the findings should be beneficial to all students, the project will specifically target members of groups underrepresented in STEM fields, including ethnic and racial minority and low-income students.

The project design includes both an observational study and an experimental study. The observational study will: (1) document individual differences in informal fraction-related knowledge in first grade; (2) determine concurrent relations between this informal knowledge and general cognitive and whole number competencies; and (3) examine whether informal fraction-related knowledge at the beginning of first grade uniquely predicts math outcomes at the end. The experimental study will explore the extent to which first graders' informal and formal fraction concepts can be affected by training. The researchers will test whether training on the number line, which is continuous and closely aligned with the mental representation of the magnitude of all real numbers, will help students capitalize on their informal fraction understandings of proportionality, scaling, and equal sharing as well as their experience with integers to learn key fraction concepts. Together, the synergistic studies will pinpoint the role informal fraction knowledge in learning key fraction concepts. All data will be collected in Delaware schools serving socioeconomically and ethnically diverse populations of students. Primary measures include assessments of informal fraction knowledge (proportional reasoning, spatial scaling, equal sharing), executive functioning, vocabulary, whole number knowledge, whole number/fraction number line estimation, formal fraction knowledge, and broad mathematics achievement (calculation, fluency, applied problems).

Paving the Way for Fractions: Identifying Foundational Concepts in First Grade (Collaborative Research: Newcombe)

The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2000424
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

Although fractions represent a crucial topic in early childhood education, many students develop only a tenuous grasp of fraction concepts, even after several years of fraction instruction that is aligned with current standards. The goal of this project, led by a team of researchers at the University of Delaware and Temple University, is to answer important questions about the informal understandings of fractions young children have before they come to school and what their relations are to fraction learning in more formal instructional settings. Proficiency with fractions dramatically increases the likelihood of students succeeding in math, which in turn increases participation in the STEM workforce. Importantly, large individual differences in fraction understandings are apparent at the start of fractions instruction in the intermediate grades. Early fraction misunderstandings cascade into more severe math weaknesses in later grades, especially when instruction may shift abruptly from whole numbers to fractions. There is a critical need to understand the roots of individual differences that arise before formal instruction takes place. Young children possess important informal fraction understandings before they come to school, but the range of these abilities and their role in formal fraction learning and development is not well understood. The goal of this project is: a) to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes; and b) to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge. The findings from the project hold promise for informing early childhood educators how fractions can be incorporated in the first-grade curriculum in new and meaningful ways. Though the findings should be beneficial to all students, the project will specifically target members of groups underrepresented in STEM fields, including ethnic and racial minority and low-income students.

The project design includes both an observational study and an experimental study. The observational study will: (1) document individual differences in informal fraction-related knowledge in first grade; (2) determine concurrent relations between this informal knowledge and general cognitive and whole number competencies; and (3) examine whether informal fraction-related knowledge at the beginning of first grade uniquely predicts math outcomes at the end. The experimental study will explore the extent to which first graders' informal and formal fraction concepts can be affected by training. The researchers will test whether training on the number line, which is continuous and closely aligned with the mental representation of the magnitude of all real numbers, will help students capitalize on their informal fraction understandings of proportionality, scaling, and equal sharing as well as their experience with integers to learn key fraction concepts. Together, the synergistic studies will pinpoint the role informal fraction knowledge in learning key fraction concepts. All data will be collected in Delaware schools serving socioeconomically and ethnically diverse populations of students. Primary measures include assessments of informal fraction knowledge (proportional reasoning, spatial scaling, equal sharing), executive functioning, vocabulary, whole number knowledge, whole number/fraction number line estimation, formal fraction knowledge, and broad mathematics achievement (calculation, fluency, applied problems).

Understanding the Role of Lesson Study in K-12 Mathematics and Science Teacher Education

This conference will shed light on how mathematics and science teacher educators are currently using lesson study to prepare pre-service teachers. The project will improve teacher educators' understanding of how lesson study can be optimized to teach pre-service teachers which will help bring this technique to the future teachers in their programs.

Lead Organization(s): 
Award Number: 
2010137
Funding Period: 
Mon, 06/15/2020 to Mon, 05/31/2021
Full Description: 

This conference will shed light on how mathematics and science teacher educators are currently using lesson study to prepare pre-service teachers. Lesson study is a structured process for teachers to study content and curriculum, carefully plan lessons to test a researchable question about student learning, teach the lesson in front of other professionals who help gather data, and use that data to evaluate the efficacy of the instruction for the students. With its focus on researching the connection between lesson enactment and student learning, lesson study contains structures for connecting practice-based teacher education to schools and classrooms. By evaluating the efficacy of the instruction, the outcomes, positive or negative, can be applied to other relevant instruction. The use of lesson study in college classes for pre-service teachers is relatively new in the United States, but it is becoming more popular. Because lesson study has been used primarily for in-service professional development of teachers, little is known about how it can be optimally employed for pre-service teacher education. This project will improve teacher educators' understanding of how lesson study can be optimized to teach pre-service teachers which will help bring this technique to the future teachers in their programs. When pre-service teachers are better prepared, high quality mathematics and science instruction may be expanded to more schools, giving more K-12 students improved opportunities to learn these subjects.

This project will support twenty-four mathematics and science teacher educators to collaborate in identifying their pedagogical goals for using lesson study and the enabling and constraining factors for its implementation that they perceive. Given that universities and schools have variance in their structures and focus, teacher educators will identify any modifications they have made to the lesson study process considering their context. By collaboratively identifying pedagogical goals, enabling and constraining implementation factors, and evidence-based adjustments to the lesson study process, this project will clarify the lesson study practices of the participants. The project will yield an edited book for other teacher educators to deploy lesson study in their teacher education programs, building from what is currently known and setting a trajectory for future pre-service teacher lesson study and research. Additionally, the project will establish a baseline network of teacher educators using lesson study within teacher education that can be built upon in the future.

Pages

Subscribe to Elementary School