Elementary School

Improving Evaluations of STEM Programs: An Empirical Investigation of Key Design Parameters

This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts, and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level.

Lead Organization(s): 
Award Number: 
2000388
Funding Period: 
Mon, 06/15/2020 to Wed, 05/31/2023
Full Description: 

To improve science, technology, engineering, and mathematics (STEM) outcomes in K-12 classrooms, it is critical to understand the landscape of the STEM learning environment. However, the STEM learning environment is complex. Students are nested within teachers, and teachers are nested within schools (which in turn are nested within districts), which implies a multilevel structure. To date, most empirical research that uses multilevel modeling to examine the role of higher levels on variation in student outcomes does not examine the teacher level. The reason is that for many states, data linkages between students and teachers have been difficult to achieve. However, in the last five years, this situation has improved in many states, which makes this work now possible. This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level. This work will support advances in research and evaluation methodologies that will enable researchers to design more rigorous and comprehensive evaluations of STEM interventions and improve the accuracy of statistical power calculations. Broad dissemination of the resulting tools and techniques will provide access through freely available websites, and workshops and training opportunities to build capacity in the field for STEM researchers to design cluster randomized trials (CRTs) to answer questions beyond what works to for whom and under what conditions.

This project will contribute to 1) describing and explaining the landscape of the STEM learning environment, an environment which includes students, teachers, and schools, and 2) applying this empirical information in the design of STEM intervention studies to enable researchers to extend beyond the usual questions about if the intervention works and for which types of students or schools. By adding teacher level variables, this analysis would account for key teacher characteristics that may moderate the treatment effect. The research will also increase the efficiency in the design of CRTs of STEM interventions. Specifically, the findings from this study will improve the internal validity and cost-efficiency of evaluations of STEM interventions by increasing the accuracy of estimates for the full range of parameters needed to conduct power analyses, particularly when the teacher level is included. The high cost associated with CRTs makes it critical to plan accurate trials that do not overestimate the required sample size, and hence cost more than necessary, or underestimate the sample size and thereby reduce the potential to generate high-quality evidence of program effectiveness. Including the teacher level in intervention studies, a critical level in the delivery of any intervention, will allow for more testing of teacher characteristics that may moderate intervention effects.

Professional Development to Support an Elementary School Science and Integrated Language Curriculum

To help address the need for science classrooms that support language learning for all students, this project will rigorously study the Science and Integrated Language (SAIL) curriculum, a year-long fifth-grade curriculum aligned to current science curriculum standards with a focus on English learners.

Lead Organization(s): 
Award Number: 
2035103
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The nation's diverse and rapidly changing student demographics includes the rise of English learners, the fastest growing student population. Such demographic shifts highlight the importance of promoting and fostering science classrooms that support language learning for all students, including English learners. To help address this need, this project will rigorously study the Science and Integrated Language (SAIL) curriculum, a year-long fifth-grade curriculum aligned to current science curriculum standards with a focus on English learners. SAIL is grounded in design principles that are based on current research on children's science learning and second language acquisition. The curriculum includes four units that focus on central, driving questions (e.g., What happens to our garbage? or Why do falling stars fall?) to anchor the key physical and life science concepts of interest. The SAIL curriculum was originally developed with a prior DRK-12 grant using iterative cycles of development, field testing, and refinement. The project has three main objectives. First, the team will develop a teacher professional development program to support classroom implementation of SAIL. Second, the project will develop and validate the instruments needed to study the intervention and its impacts on teachers and students. Third, a quasi-experimental field trial will be conducted to assess the SAIL intervention's impacts on teachers and students.

The team will spend first year refining and iteratively developing the SAIL professional development package along with the measures to be used in the field trial. This is followed by the quasi-experimental study, which includes a treatment group of 15 elementary schools. A matched comparison group of 15 elementary schools will be obtained using propensity score matching at the school, teacher, and student levels. Fifth-grade science teachers will participate for 2 years, while two cohorts of fifth-grade students will participate for 1 year each. Measures will focus on student science learning with particular attention to English learner students and observations of teachers' instructional practices. Data will be analyzed using multi-level models accounting for nesting of students within teachers which, in turn, are nested within schools. At the completion of the project the team will have produced: (1) a fully documented professional development program to support teacher implementation of the SAIL curriculum, (2) measures needed to rigorously study the intervention and its impacts on teachers and students, and (3) further evidence of the potential effects of the SAIL intervention on teachers and students through a rigorous quasi-experimental field study.

Online Practice Suite: Practice Spaces, Simulations and Virtual Reality Environments for Preservice Teachers to Learn to Facilitate Argumentation Discussions in Math and Science

This project will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science.

Lead Organization(s): 
Award Number: 
2037983
Funding Period: 
Sat, 08/15/2020 to Mon, 07/31/2023
Full Description: 

In teacher education it is widely acknowledged that learning to teach requires that preservice teachers have robust, authentic, and consistent opportunities to engage in the work of teaching—ideally across different contexts, with diverse student populations, and for varied purposes—as they hone their instructional practice. Practice teaching experiences in K-12 classrooms, such as field placements and student teaching, are the most widely used approaches to provide these opportunities. In an ideal world these experiences are opportunities for preservice teachers to observe and work closely with mentor teachers and try out new instructional strategies with individual, small groups, and whole classes of K-12 students. While these experiences are critical to supporting preservice teachers' learning, it can be difficult to help preservice teachers transition from university classrooms to field placements in ways that provide them with opportunities to enact ambitious instructional strategies. This need is particularly acute in mathematics and science education, where classrooms that model strong disciplinary discourse and argumentation are not always prevalent. This challenge is amplified by the COVID-19 pandemic environment; with schools and universities across the nation operating online, many preservice teachers will miss out on opportunities to practice teaching both within their courses and in K-12 classrooms. To address this urgent challenge in STEM education, project researchers will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science, a critical teaching practice in these content areas. The practice-based activities include: (1) interactive, online digital games that create targeted practice spaces to engage preservice teachers to respond to students' content-focused ideas and interactions; (2) facilitating group discussions with upper elementary or middle school student avatars in a simulated classroom using performance-based tasks; and (3) an immersive virtual reality whole-classroom environment that allows for verbal, textual and non-verbal interactions between a teacher avatar and 24 student avatars. The online practice suite, made up of these activities along with supports to help teacher educators use them effectively, represents not just an immediate remedy to the challenge of COVID-19, but a rich and flexible set of resources with the potential to support and improve teacher preparation well beyond the COVID-19 challenge.

This study will use design-based research to create this integrated system of practice teaching opportunities. This approach will involve developing and refining the individual practice activities, the integrated online practice suite, and the teacher educator support materials by working with a teacher educator community of practice and engaging up to 20 teacher educators and 400 preservice teachers in multiple rounds of tryouts and piloting during the three-year project. The project will proceed in three phases: a first phase of small-scale testing, a second phase trying the materials with teacher educators affiliated with the project team, and a third phase piloting materials with a broader group of mathematics and science teacher educators. Data sources include surveys of preservice teachers' background characteristics, perceptions of the practice activities, beliefs about content instruction, perceptions about preparedness to teach, and understanding of argumentation and discussion, videos and/or log files of their performances for each practice teaching activity, and scores on their practice teaching performances. The project team will also observe the in-class instructional activities prior to and after the use of each practice teaching activity, conduct interviews with teacher educators, and collect instructional logs from the teacher educators and instructional artifacts used to support preservice teachers' learning. Data analysis will include pre and post comparisons to examine evidence of growth in preservice math and science teachers' beliefs, perceptions, understanding, and teaching performance. The project team will also build a series of analytic memos to describe how each teacher educator used the online practice suite within the mathematics or science methods course and the factors and decisions that went into that each use case. Then, they will describe and understand how the various uses and adaptations may be linked to contextual factors within these diverse settings. Findings will be used to produce empirically and theoretically grounded design principles and heuristics for these types of practice-based activities to support teacher learning.

Broadening Participation in Mathematics for English Learners with Mathematics Difficulties: A Multi-Site Impact Study

The purpose of this project is to rigorously test the efficacy of the Precision Mathematics First-Grade (PM-1) intervention on the mathematics outcomes of English learners (ELs) who face mathematics difficulties (MD). The PM-1 intervention is designed to support students with or at risk for MD in developing a robust understanding of the underlying concepts, problem-solving skills, and vocabulary of early measurement and statistical investigation.

Lead Organization(s): 
Award Number: 
2010550
Funding Period: 
Tue, 09/01/2020 to Sun, 08/31/2025
Full Description: 

Success in mathematics has major implications for student success at the public school and postsecondary levels, as well as contributing to the nation's STEM workforce and economy. While building mathematics literacy is important for all learners, it is especially critical for students most vulnerable for academic risk. Among these at-risk subgroups are English learners (ELs). By definition, ELs are not yet proficient in academic English and often come to school unprepared for the linguistic demands of disciplinary learning. Authentic and engaged content learning activities, such as early mathematics, may comprise the ideal context for acquiring the language and literacy skills ELs need. Research suggests ELs represent the fastest growing subgroup in U.S. schools. Currently, U.S. classrooms serve over five million ELs and estimated projections suggest that up to one in four students in 2025 will be an EL. Considering the rising presence of ELs, there is an urgent need to advance equity and eliminate disparities in STEM education among this group of learners who are often underserved by current practice. Overwhelming evidence suggests that ELs place well short of their non-EL peers in the area of mathematics. Therefore, the purpose of this 5-year Impact Project is to rigorously test the efficacy of the Precision Mathematics First-Grade (PM-1) intervention on the mathematics outcomes of ELs who face mathematics difficulties (MD). PM-1 is an innovative, first-grade, English-based, mathematics intervention focused on state-of-the-art technology and hands-on problem-solving activities, the PM-1 intervention is designed to support students with or at risk for MD in developing a robust understanding of the underlying concepts, problem-solving skills, and vocabulary of early measurement and statistical investigation. This study will examine student response to the PM-1 intervention based on variables such as students' initial mathematics skill levels and proficiency in English, and explore how the rate and quality of mathematics discourse opportunities for ELs may predict gains in mathematics outcomes.

This impact study will investigate the efficacy of the Precision Mathematics First-Grade (PM-1) intervention through a methodologically rigorous randomized controlled trial. The study will utilize a randomized block design, blocking on classrooms and randomly assigning first-grade English learners (ELs) who face mathematics difficulties (MD) within first-grade classrooms to one of two conditions: (a) PM-1 intervention or (b) control (business-as-usual). Approximately 900 ELs from 150 first-grade classrooms will participate. Three research aims will guide this study. Aim 1 will systematically evaluate the average effect of PM-1 on student mathematics achievement; while Aim 2 will investigate differential response to the intervention based on student-level variables, including ELs proficiency in English and pretreatment mathematics performance. In Aim 3, researchers will explore whether the frequency and quality of mathematics discourse opportunities for ELs predicts gains in mathematics achievement. Although random assignment will take place at the student level, students will be assigned to small instructional group formats for intervention delivery. Therefore, the design employs a partially nested mixed-model Time × Condition analyses to evaluate the effect of PM-1 on pretest to posttest gains in mathematics achievement (Aim 1) and differential response to PM-1 based on student characteristics (Aim 2). A random coefficients analysis that nests repeated assessments within students and PM-1 intervention groups will explore whether the rate and quality of mathematics discourse opportunities predicts ELs' gains in mathematics achievement (Aim 3).

Design Talks: Building Community with Elementary Engineering (Collaborative Research: Watkins)

This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010237
Funding Period: 
Sat, 08/01/2020 to Mon, 07/31/2023
Full Description: 

Inclusion of engineering design activities in elementary classrooms has become increasingly common, and teachers are becoming more comfortable with the basics of teaching engineering. There is now a need and an opportunity to understand different approaches teachers can take to support students to deepen their understanding of engineering design content knowledge and engineering practices. While many existing approaches to preK-12 engineering education emphasize problem solving and the development of engineering solutions, this project also explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities. The discussion-focused, community-based engineering curricular approach has promise in providing opportunities for children to practice sense-making and decision-making skills and also develop a perspective of care as central to engineering design work.

To accomplish this project, the researchers extend an ongoing partnership with two elementary teachers to implement the discussion-rich community-based engineering curricular approach and collect video-recordings of the elementary students' engineering design conversations. The videos will be analyzed using discourse analysis to generate evidence-based theory on the characteristics and dynamics of classroom talk that support elementary students' knowledge construction in engineering design contexts, as well as theory on how teachers prompt them and elicit meaningful participation from all students. By providing additional resources and an intellectual framework for investigating and prompting meaningful disciplinary discourse in engineering design, the project will support the two partner teachers to apprentice eight of their colleagues over three years into the work of community-based engineering and design talk. This collaboration will develop resources that will support teachers and students to engage in more caring, ethical discourse around design. Specifically, the project team will create an online video library of design talk resources for grade 1-6 classroom teachers. The Design Talk website will enable elementary teachers to see distinctly different kinds of classroom conversations that make elementary engineering a site for students not just to build products, but also to build knowledge.

Design Talks: Building Community with Elementary Engineering (Collaborative Research: Wendell)

This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010139
Funding Period: 
Sat, 08/01/2020 to Mon, 07/31/2023
Full Description: 

Inclusion of engineering design activities in elementary classrooms has become increasingly common, and teachers are becoming more comfortable with the basics of teaching engineering. There is now a need and an opportunity to understand different approaches teachers can take to support students to deepen their understanding of engineering design content knowledge and engineering practices. While many existing approaches to preK-12 engineering education emphasize problem solving and the development of engineering solutions, this project also explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities. The discussion-focused, community-based engineering curricular approach has promise in providing opportunities for children to practice sense-making and decision-making skills and also develop a perspective of care as central to engineering design work.

To accomplish this project, the researchers extend an ongoing partnership with two elementary teachers to implement the discussion-rich community-based engineering curricular approach and collect video-recordings of the elementary students' engineering design conversations. The videos will be analyzed using discourse analysis to generate evidence-based theory on the characteristics and dynamics of classroom talk that support elementary students' knowledge construction in engineering design contexts, as well as theory on how teachers prompt them and elicit meaningful participation from all students. By providing additional resources and an intellectual framework for investigating and prompting meaningful disciplinary discourse in engineering design, the project will support the two partner teachers to apprentice eight of their colleagues over three years into the work of community-based engineering and design talk. This collaboration will develop resources that will support teachers and students to engage in more caring, ethical discourse around design. Specifically, the project team will create an online video library of design talk resources for grade 1-6 classroom teachers. The Design Talk website will enable elementary teachers to see distinctly different kinds of classroom conversations that make elementary engineering a site for students not just to build products, but also to build knowledge.

Exploring Changes in Teachers' Engineering Design Self-Efficacy and Practice through Collaborative and Culturally Relevant Professional Development

In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.

Lead Organization(s): 
Award Number: 
2010169
Funding Period: 
Fri, 01/01/2021 to Sun, 12/31/2023
Full Description: 

Promoting diverse, inclusive and equitable participation in engineering design education at the elementary and middle school levels is important for a number of reasons. In addition to benefits of a diverse STEM workforce to industry and the economy, youth are better able to make informed decisions about pursuing STEM degrees and STEM career pathways and youth are able to develop critical thinking and problem solving skills that allow them to be creative and innovative problem solvers. However, for youth to participate in inclusive and equitable engineering design experiences in elementary and middle schools settings, teachers need opportunities to develop engineering content knowledge, pedagogical content knowledge, and strategies for culturally-relevant teaching. In this project, investigators from the University of North Dakota develop, evaluate, and implement an on-going, collaborative professional development program designed to support teachers in teaching engineering design to 5th-8th grade students in rural and Native American communities.

The project advances the understanding of teacher training in K-12 engineering education and more specifically culturally-relevant engineering design education for 5th-8th grade students. The program design is guided by principles from Bandura's Social Learning Theory, Gladson-Billing's culturally-relevant teaching, and Gay's cultural-responsive teaching. The project combines promising, but often isolated, elements from previous engineering education professional development to give teachers a) pedagogical and content knowledge, b) culturally-relevant pedagogy that is inclusive of indigenous students, c) a supportive professional learning community, d) examples of project-based engineering problems implemented in real classrooms, e) extended scaffolded practice with their own classroom engineering tasks, and f) on-going support. The program is designed for teachers in rural and tribal schools with curricular materials developed collaboratively with community input to specifically address their community's unique needs. The project research team, guided by a diverse advisory board, will collect both quantitative and qualitative data in the forms of surveys, interviews, and videotaped observations to determine if and how the project is affecting classroom engineering instruction and pedagogy, as well as the sense of competence and self-efficacy of the teacher participants. The classroom engineering tasks created through this project, especially those developed to be specifically relevant to Native American and rural student populations, will be promoted and made available to other teachers through a project website, teaching practice journals, and teacher conferences.

Exploring COVID and the Effects on U.S. Education: Evidence from a National Survey of American Households

This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Award Number: 
2037179
Funding Period: 
Wed, 07/15/2020 to Wed, 06/30/2021
Full Description: 

The COVID-19 epidemic has been a tremendous disruption to the education of U.S. students and their families, and early evidence suggests that this disruption has been unequally felt across households by income and race/ethnicity. While other ongoing data collection efforts focus on understanding this disruption from the perspective of students or educators, less is known about the impact of COVID-19 on children's prek-12 educational experiences as reported by their parents, especially in STEM subjects. This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Since March of 2020, the UAS has been tracking the educational impacts of COVID-19 for a nationally representative sample of approximately 1,500 households with preK-12 children. Early results focused on quantifying the digital divide and documenting the receipt of important educational serviceslike free meals and special education servicesafter COVID-19 began. This project will support targeted administration of UAS questions to parents about students' learning experiences and engagement, overall and in STEM subjects, data analysis, and dissemination of results to key stakeholder groups. Findings will be reported overall and across key demographic groups including ethnicity, disability, urbanicity, and socioeconomic status. The grant will also support targeted research briefs addressing pressing policy questions aimed at supporting intervention strategies in states, districts, and schools moving forward. Widespread dissemination will take place through existing networks and in collaboration with other research projects focused on understanding the COVID-19 crisis. All cross-sectional and longitudinal UAS data files will be publicly available shortly after conclusion of administration so that other researchers can explore the correlates of, and outcomes associated with, COVID-19.

Storytelling for Mathematics Learning and Engagement

This project will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. The project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.

Award Number: 
2010276
Funding Period: 
Wed, 07/01/2020 to Fri, 06/30/2023
Full Description: 

Mathematics education in the United States has long been challenged by three key issues this project seeks to address: (a) narrow conceptions of mathematics as a discipline (b) the lack of racially/ethnically diverse role models for mathematics in terms of representation in the public imagination, media, and schools; and (c) a paucity of resources for instruction to harness students' early interest and engagement in mathematics across racial and gender groups. One promising way to expose teachers and students to a variety of images and diversity of models of mathematics is to include images of diverse people telling their stories about their doing and knowing of mathematics. Although storytelling is a natural part of human activity and is used extensively in other elementary school subjects like social studies and language arts, it is not usually found in elementary mathematics. As part of this three-year project, the project team will collect and curate digital stories of diverse mathematicians sharing stories of their learning within and beyond schools. These short videos will become part of a more extensive digital database of mathematics stories that will be aligned with K-8 mathematics topics and then materials will be developed for teachers to use. Throughout this work, the project team will explore the use of mathematics storytelling on K-8 teacher and student mathematics learning and engagement.

This project responds to calls for improved equity and access to rich, rigorous math: to contribute to understanding a more equitable K-12 pedagogy; to disrupt racial inequities in math (and STEM, more broadly) through culturally responsive and inclusive instructional practice; and to enhance teachers' instructional practice. The first phase of the work will involve collecting and curating a set of digital stories told by mathematicians. Then, through two cycles of design and piloting, the project team will work with participating teachers and students to finalize the design of the videos and associated instructional materials. A sample of pilot teachers will be purposefully selected to account for diversity in region, school population, and experience level of teachers. The research team will also design grade-level appropriate research instruments, collect surveys, and conduct interviews to investigate both teachers' and students' conceptions of mathematics, their conceptions of who "belongs" in mathematics, and teachers' instructional practice with the storytelling materials themselves. Their analysis will draw on quantitative and qualitative research methods. For example, they will use narrative inquiry to examine teachers' and students' experiences with the videos. Using the research findings, the project will make available samples of teachers' pedagogical repertoires related to these videos and demonstrate how storytelling can be used as an effective mechanism for mathematics teaching and learning. Products from this project will include a digital database and supporting instructional materials for teachers, school leaders, and professional developers to use. The dissemination of this research will contribute to building models for mathematics education that serve to deepen understanding of mathematics of teachers and students, as well as simultaneously empowering students of all backgrounds, but especially underserved students, to activate and pursue their interests in mathematics.

A Quantitative Synthesis of Research on Elementary Science Programs

The goal of this project is to conduct a meta-analysis to assist in establishing a solid base of evidence to inform further research, practice, and policy in the area of early science education. The project will bring up-to-date the meta-analysis literature in the area of early science education.

Lead Organization(s): 
Award Number: 
2006179
Funding Period: 
Wed, 07/01/2020 to Wed, 06/30/2021
Full Description: 

The success of all students in science has become a priority, as the economic future depends on a workforce that is capable in science, mathematics, technology, and engineering. One area of emphasis has been on elementary science, where children's early attitudes and orientations about science are formed. Given the growth of high-quality evaluations of elementary science programs in recent years and the need to know what works in science education, an up-to-date review identifying effective programs and malleable factors in elementary science is needed. The goal of this project is to conduct a meta-analysis to assist in establishing a solid base of evidence to inform further research, practice, and policy in the area of early science education. The previous meta-analysis completed by this team published findings from approximately ten years ago. This project will bring up-to-date the meta-analysis literature in the area of early science education.

The review methods in the proposed quantitative synthesis on elementary science programs will be similar to those used by the What Works Clearinghouse. The focus of the review procedures is on timeliness, comprehensiveness, transparency, and minimizing bias. The goal of the project is to obtain and synthesize the entire literature evaluating elementary science programs to discover what works, for whom, and under what conditions. The team will systematically review the literature available in English between 2010 and 2021 to locate every study that meets well-established and accepted standards. Second, studies are grouped by categories, to look for patterns among effect sizes across studies. The team will use meta-regression techniques to test statistical significance of the categories and will explore cross-cutting substantive and methodological factors, as well as key moderators and mediators. The team will communicate findings to many audiences, including scholarly journals, practitioner journals, and the public.

Pages

Subscribe to Elementary School