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 (–5)!
A

first-year-algebra class was considering how many ways five people 
could be arranged in line. Working together, they did not take long 
to hatch the idea that any of the five could be first and, for each 
choice, any of the remaining four could be second: so far, 5 × 4 
choices. For each of those possibilities, any of the remaining three 

people could go next: 5 × 4 × 3. Two remain for fourth place: 5 × 4 × 3 × 2. Now 
there is “no choice” (or “one choice,” depending on how you like to say it) about 
the last person. Many students calculated each step, arriving at 120 when “no 
choice” remained; few had explicitly written the 5 × 4 × 3 × 2 structure. When we 
reviewed the logic, the unfinished look of 5 × 4 × 3 × 2 moved some students to 
suggest 5 × 4 × 3 × 2 × 1. The value does not change, but it looks more elegant. A 
few students recognized this structure and knew it was called “factorial,” which 
they explained informally as “multiply all the numbers down to 1.” 

As class ended, Noa asked if negative numbers could have factorials. This 
content fits nowhere in precollege mathematics, but taking a students’ math-
ematical curiosity seriously is good teaching. 

Her question did fit a common theme of this class—how to make sense of 
mathematics and extend it into new territory. For the students, this mostly 
meant extending in a consistent way from positive integers to the real numbers. 
By thinking about extension, we could tie content to mathematical thinking as 
articulated in the Common Core’s Standards for Mathematical Practice (SMP) 
and elsewhere (CCSSI 2010; Goldenberg et al. 2015). The students had most 
recently worked through the mathematical idea of “extension” to make sense of 
exponents in expressions like 5–2 and 91/2. 

E. Paul Goldenberg 
and Cynthia J. Carter

A fi rst-year algebra student’s curiosity about 
factorials of negative numbers became a 
starting point for an extended discovery 
lesson into territory not usually explored in 
secondary school mathematics. Student

Asks about
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We approached extension by starting with what 
we called a “natural meaning” and then trying to 
extend it in a way that “remained useful” and “did 
not break anything.” These informal, almost frivo-
lous phrasings were deliberate, intended to convey 

that our goal was to 
make sense of something 
new: we were creating
mathematical ideas, not 
attempting to discover 
(or look up) some invio-
lable law of nature that 
we just happened not 
to know yet. This is the 
stance that mathemati-
cians take. The students 
understood well that 
extension was a creative
act, not a formulaic one. 
It required curiosity, 
experimentation, judg-
ment, logic, and a sense 
for elegance. They had 
already shown that sense 
for elegance in their 
preference for 5 × 4 × 3 
× 2 × 1 over 5 × 4 × 3 ×
2. We want them to see 
that mathematics itself, 
not just its application, 

involves creativity and esthetics. Waiting for that 
until graduate school is too late; by then, we have 
lost too many creative mathematical thinkers. 

To extend exponentiation, students returned to 
the reason for that “shorthand” notation. Repeated 
multiplication

a× a× a× i i i × a
n

! "## $##

a× a× a× i i i × a
n

! "## $## i a× a× a× i i i × a
m

! "## $## ,is useful enough to warrant a name (exponentia-
tion) and shorter notation an. We do not invent 
simplified notations for calculations that we sel-
dom need. In Girls’ Angle Bulletin, Ken Fan (2012, 
p. 14) writes “. . . much notation . . . starts as a mat-
ter of convenience, and sometimes takes on a life 
of its own.” But that “natural meaning” for expo-
nentiation—repeated multiplication—makes sense 
only when n is a counting number greater than 1. 
“Four 3s multiplied together” (34) makes sense, 
but “one 3 multiplied together” is stretching it. 
Multiplied together with what? And “zero 3s multi-
plied together” is total nonsense. Here is where the 
notion of extension is needed.

We would like to be able to use the symbol 3n

without restrictions, so we try to invent sensible 
meanings, consistent with the natural meaning, for 
unnatural circumstances like 31 and 30. The natural

meaning of an × am is

a× a× a× i i i × a
n

! "## $##

a× a× a× i i i × a
n

! "## $## i a× a× a× i i i × a
m

! "## $## ,

which we summarize as an × am = an + m. We can 
use that to make sense of the (so far) nonsensical 
a0. For a0 × am to equal a0 + m (which is just am), we 
want a0 to be 1. This is not a “natural” meaning—
we invented exponentiation as repeated multiplica-
tion, and a0 is not that at all—but it is a consistent 
extension: it remains useful and does not break 
anything. 

We can also define 2–3 by extension. By our 
natural meaning, an × am = an + m, so we would want 
2–3 × 23 to be 20. Our natural meaning for 23 is 8; 
we are now content that 20 is 1; so, to remain con-
sistent, we want 2–3 to be 1⁄8. And we can affirm in 
other ways that this makes sense. Starting with 16, 
repeatedly divide by 2, getting 8, 4, 2, 1,½, 1⁄4, 1⁄8, 
and so on. Representing that sequence with expo-
nents, we get 24, 23, 22, 21, and 20, so the notation 
2–1, 2–2, 2–3 continues to make sense: It remains use-
ful and nothing breaks. 

We can go further. Just as “zero 9s multiplied 
together” is nonsensical, there is no natural mean-
ing for 91/2. But, for a sensible extension, we would 
want 91/2 × 91/2 = 91 (which we happily agree is 9), so 
we want 91/2 to be 3. (See EDC 2016a, 2016b; Mark 
et al. 2014; Goldenberg et al. 2015.)

Saying “this is what we want” rather than “this 
is what must be” may also seem frivolous, but it is 
important. Although our “wants” cannot be arbi-
trary—mathematicians do not just make stuff up—
the way we construct definitions depends both on 
logical consistency and on what feels useful. 

BACK TO NOA AND (–5)!
Just as multiplication and exponentiation get spe-
cial names and symbols because they are useful, so 
does factorial. We do not give 

5 × (4½) × 4 × (3½) × 3 × (2½) × ···

a special name and symbol because that computa-
tion is not useful enough. So, to extend the facto-
rial, we need to see why we care about it at all and 
what we want its value to be in “unnatural” cases. 

The class already knew about arrangements: 5 
people can be arranged in 5 × 4 × 3 × 2 × 1 ways. 
We use 5! as the shorthand for that computation. 

The class also knew that to choose 3 people out 
of 5, they had 5 choices for “first” person, 4 choices 
for “second,” and 3 choices for “third,” or 5 × 4 × 3 
possibilities. (A confusion lurks here; we will deal 
with it later.) This looks like the beginning of a fac-
torial calculation, so elegance suggested writing 5 ×
4 × 3 using factorials: 5!/2!. Ah, but we do not care 

Defi ning zero factorial  
met a practical need, 

but this new romp
 into (–5)! started 
because of Noa’s 

curiosity,  a 
problem posed by a 

student, not by a book.

lous phrasings were deliberate, intended to convey 
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who is “first,” “second,” or “third,” so we must 
divide this result by the number of ways of arrang-
ing the people we chose. There are 3! arrangements 
of three people, so we now have 5!/(2!

 
× 3!). We 

would be delighted if that calculation works for 
choosing 3 people out of 7, so we check the logic 
(and the actual counting) to see that it does. The 
“natural” meaning we gave to the factorial contin-
ues to serve well until we try to choose 1 person 
out of 5. We know the answer—5 choices—but, 
for elegance, we want our computation 5!/(1! × 4!)

 to work. We have a natural meaning for 5! and 4!, 
but “multiply all the numbers down to 1” makes 
little sense for 1!. Our computation yields 5 only if 
we claim 1! = 1. And what if we choose all 5 people 
out of 5? Again, we know the answer—“there’s 
one way; take ’em all”—but we would still like our 
formula to work. It says 5!/(5! × 0!). The factorial’s 
natural definition makes no sense for 0!, but we 
can salvage the formula if we claim that 0! = 1.

But claiming is not mathematics. We cannot 
claim that 2 + 2 = 7 even if we want to. Let’s see if 
we can make our claims about the factorial feel less 
arbitrary. The natural meaning tells us that 

 
 4! = 4 × 3 × 2 × 1
  = 4 × (3 × 2 × 1)

  = 4 × 3!.

Generalizing, n! = n(n – 1)!
Using 3! = 3 × 2 × 1 as an example of a “natural” 

starting place, we will use n! = n(n – 1)! as (the rest 
of) a definition to derive new cases from ones that 
we already have. We have already seen how to get 
4! from it, and we can easily get the factorial of any 
larger integer n that way. This combination—a sin-
gle case we know and a way of deriving new cases 
from it—is called a recursive definition. Rearranged, 
n! = n(n – 1)! says that (n – 1)! = n!/n, which lets 
us give meaning to 1! and 0! in ways that “remain 
useful” (in other words, they satisfy our wants) 
and “don’t break anything” (they fit definitions 
of basic operations and behavior of the particular 
function—in this case, the factorial). Using the 
recursive definition, (n – 1)! = n!/n, we get 1! = 
2!/2. That gives the value 1 that we wanted. And 0! 
= 1!/1 is another happy result. To find the value of 
Noa’s (–5)!, keep taking steps backward! 

The next step says that (–1)! = 0!/0. Uh oh. . . . 
We cannot take that step. We cannot divide by 0. 
Are we doomed?

Maybe. But we will not give up yet. Making 
sense of a problem and persevering in solving it 
(SMP 1) involves, among other things, “chang[ing] 
course if necessary.” We cannot directly get to 
(–1)!, but maybe we can sneak up on it gradually 
by inventing a way to think about the factorial 

between integers, interpolating values between the 
natural ones. For example, what might we want 
(2½)! to be? 

When we defined 1! and 0!, we knew we wanted 
them to equal 1, and we found a way to get that 
value while remaining consistent with the natural 
meaning of the factorial and its recursive descrip-
tion. But for (2½)!, we have no starting place: nei-
ther a rock-solid idea of 
what value we want (as 
we had for 1! and 0!),  
nor such a rule as  
an × am = an + m that arises 
from natural meaning 
and allows us to inter-
pret an × am even when 
n and m are not inte-
gers (as long as n + m is 
an integer). 

Intuition makes us 
want (2½)! to be between 2! and 3!, and closer to 
2!, just as 2! is between 1! and 3!, and closer to 1!. 
Intuition does not always win, but it is a decent 
starting place. So, we plot 0!, 1!, 2!, and 3!, sketch 
as smooth a curve as we can through these points, 
and think. (See fig. 1.) Hmmm. . . . What happens 
between 0! and 1? Should the graph go straight 
across, staying 1 throughout that whole interval? 
Should it curve slightly below and then come back 
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Fig. 1 A “smoothed out” factorial curve shows that  

(21/2)! ≈ 3.3 and that (11/2)! ≈ 1.3.

Taking students’ 
mathematical  
curiosity seriously  

is good 
teaching.
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up? For now, we will leave that blank and return to 
it later. We do not yet know what to expect. 

To take this sketch seriously, we would like
(2½)! to be about 3.3 and we’d like (1½)! to be 
about 1.3. Recall, we have no formula and no natu-
ral definition; we are just eyeballing numbers from 
a rough sketch. We are experimenting. 

Confidence that we are on the right track would 
increase if the natural definition still applies and 
(1½)! = (2½)!/(2½). Amazingly, even with our 
rough sketch and estimates, 1.3 ≈ 3.3/2.5. Wow! 
“Making assumptions and approximations to sim-
plify a complicated situation” (SMP 4) really is a 
powerful way to approach problems.

What about (½)! = (1½)!/(1½)? The compu-
tation (½)! = (1.3)/(1½) ≈ 0.87 lets us take yet 
another step, (–½)! = (½)!/(½) ≈ 1.77. 

Wow again! This looks quite well behaved. So 
far, at least, it still fits our intuition, and we can 
keep going, getting more positive and negative half-
integer values (see fig. 2). 

We took this approach to see if we could sneak 
up on (–1)!, which we could not reach directly. 
Students could approximate (–0.9)! the same way 
they approximated (–½)!, by estimating, say, 2.1!. 
It looks roughly like 2.2. Working backward, the 
definition let them compute 1.1!, then 0.1!, then 
(–0.9)! ≈ 9.5. And they could eyeball 2.9! ≈ 5.3, 
divide by 2.9 to get 1.9! ≈ 1.8, divide by 1.9 to get 
0.9! ≈ 0.96, divide by 0.9 to get (–0.1)! ≈ 1, and 
divide by –0.1 to get (–1.1)! ≈ –10. Wow yet again! 
In the tiny distance from –0.9 to –1.1, the value 
of the factorial somehow goes from high positive 
(∼9.5) to low negative (∼ –10). No wonder (–1)! 
has no sensible value. 

To calculate factorials at half integers starting 
with (2½)!, as we described here, students first 
used an eyeball approximation (3.3), but we later 
supplied 3.32335—a more precise starting value 
than they could derive with their current math-
ematical background—which let them compute the 
value of (–½)! with enough precision to reveal a 
surprise. 

Start with (2½)! ≈ 3.32335 and compute the 
value of (–½)! yourself, just as they did, and then 
square that result. Mathematics is full of surprises! 
That sentence deserves an exclamation point. First-
year algebra students do not yet have the math-
ematical experience to explain that surprise, but 
they enjoyed the feeling of awe it brought them and 
felt proud. 

To fill in fine details, students then graphed x! 
with Desmos®, https://www.desmos.com/calculator. 
(See fig. 3.) 

Pedagogically, the timing matters. If students 
had used this tool at the outset, all it would have 
done is reveal an “answer”: Factorials of negatives 
exist, and they look strange. Done. After the stu-
dents’ work, the tool supported their reasoning and 
led to new ideas and insights. The graph is weird, 
but the alternating sign of (–3½)!, (–2½)!, (–1½)!, 
(–½)! rings a bell. If n! = n(n – 1)!, then 
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Fig. 2 Two new points, (11/2)! ≈ 0.87 and (–1/2)! ≈ 1.77, allow us 

to sketch more of the curve.

Student questions, like this one, are not tame. 
What we can do immediately is say, “Wow, I need to think about that.”  

That tells students that having to think is OK, and that there are 
things that you, as the teacher, do not know. It also tells students that 

you value their question enough to invest time in it.

Student questions, like this one, are not tame. 
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(–½)! = (–½) × (–1½)!, and then (–1½)! = (–1½) 
× (–2½)!, and so on. Of course the sign alternates! 
Unpacking, we would see that 

(–½)! 
= (–½)(–1½)(–2½)(–3½)(–4½)!,

something that looks a bit like the “natural” 
idea of the factorial with which we started. If we 
had an approximate value for (–4½)!, we could 
approximate (–½)! on a plain calculator.

THINGS WE DID NOT DO TO 
EXTEND FACTORIAL
We did not make stuff up. 

We did not, for example, arbitrarily decide that 
(–5)! should be (–5)(–4)(–3)(–2)(–1). That looks 
temptingly like our natural definition, but it does 
not pass the “doesn’t break anything” test. It breaks 
the natural definition: multiplying n times (n – 1)! 
should produce n!.

We also did not invent something like 3½! =
 3½ • 2½ • 1½. That preserves the n! = n(n – 1)! 
rule but arbitrarily chooses where to stop. Why 
not 3½ • 2½ • 1½ • ½? Moreover, if 3½! = 
3½ • 2½ • 1½, then would 2½! = 2½ • 1½, and 
1½! = 1½? Graph these made-up computations 
alongside the natural points for n!. They don’t fit 
well. Although secondary school students do not 
know what use there might be for factorials of any-
thing other than nonnegative integers, if there is a 
use, this awkwardly fitting made-up computation 
would seem unlikely to “remain useful.” 

THINGS WE DID DO
Defining 0! met a practical need, but this new 
romp into (–½)! started because of Noa’s curios-
ity, a problem posed by a student, not by a book! 
Responding to curiosity fosters curiosity. But not 
all responses are equal.

Telling Noa, “If you major in mathematics in 
college, you will learn about the gamma function, 
and that will answer your question,” is not reward-
ing. Nor is the answer, “Yes, negative nonintegers 
have factorials.” Both defer further thought. 

Responding well does not require that we teach-
ers know all the answers. Our challenge is to find 
something that fits current teaching goals and stu-
dent capabilities and that lets students use and hone 
their skills to address their own question. Some-
times we will be ready immediately, but more often 
we will be stuck needing to think harder than is 
possible while we are in the spotlight, or even need-
ing to look things up. Student questions, like this 
one, are not tame. What we can do immediately is 
say, “Wow, I need to think about that.” That tells 
students that having to think is OK, and that there 

are things that you, as the teacher, do not know. 
It also tells students that you value their question 
enough to invest time in it. It’s also often the hon-
est move, even if you know the mathematics well. 
Unexpected questions like Noa’s almost always 
require us to take time to figure out how to make 
what we know (or learn) accessible to the students. 

The methods that mathematicians historically 
used to derive a function that “smooths out” facto-
rial are beyond first-year algebra, but the adventure 
described above is not: Noa’s class found the chal-
lenge fun and could engage in the entire storyline 
and logic. With patience, a simple calculator, and 
a teamwork divide-and-conquer strategy, the 
students gathered enough results to make a fair 
approximation of a graph of the factorial on posi-
tive and negative numbers (excluding negative 
integers, which they could logically rule out). Being 
able to find a way to answer their own question 
was enormously motivating. 

Finally, taking students’ curiosity seriously 
shows students that posing problems—a genuinely 
new question not just a familiar problem with its 
nouns and numbers changed—is valued. It should
be valued because it is valuable, partly as a super 
tool for problem solving and partly because it 
is what drives invention and discovery. Curios-
ity moves professionals, too. Some mathematical 
results that were only later recognized as useful 
were initially fueled partly by curiosity. 

Fig. 3 The graph of x! has some values plotted.
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MAKING SPACE FOR CREATIVE MATH
Mathematicians experiment, follow hunches 
and curiosity, and explore new ideas and ter-
ritories. Too often, students (before graduate 
school) get a different image of math: for-
mulas and tricks to be deployed. 

The cost is high. Students who could 
be creative in mathematics, in computer 
science, or in other STEM fields aban-
don mathematics before they have a 
chance to discover its genuine appeal; 

many who do pursue higher-level 
courses carry an image of 
mathematics that does not 

include curiosity, creativity, 
and sense making. 

Noa’s class is different. Even 
young students can learn to ask 

real mathematical questions and 
figure out how to think through 

those questions, if questioning is 
encouraged and the questions are 

honored. But student questions are 
predictably not tame and can venture 

into places that are not in the curricu-
lum. Making space—even a little space—

to take the questions seriously helps the 
students take themselves seriously as 

mathematicians. Not all Noa’s classmates will be 

mathematicians, but they all grew as mathematical 
thinkers and know the fun, challenge, and genuine 
surprises of doing mathematics, learning not only 
its rich body of knowledge but also what mathemat-
ical thinking is all about. 
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Let’s chat 
about (–5)!

MT has a new way for readers to 
interact and connect with authors 

and with one another.

On Wednesday, October 25, 
at 9:00 p.m. EST,

we will discuss “A Student Asks about (–5)!” by 
E. Paul Goldenberg and Cynthia J. Carter. Join the 
discussion at #MTchat. We will also Storify the 
conversation for those who cannot join us live.  

Mark your calendars for #MTchat on the 
fourth Wednesday of each month.
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•  Ways to empower your students to ask and answer 
critical questions about the world around them
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