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Estimating and monitoring the construct-irrelevant variance (CIV) is of significant
importance to validity, especially for constructed response assessments with rich
contextualized information. To examine CIV in contextualized constructed response
assessments, we developed a framework including a model accounting for CIV and a
measurement that could differentiate the CIV. Specifically, the model includes CIV due to
three factors: the variability of assessment item scenarios, judging severity, and rater
scoring sensitivity to the scenarios in tasks. We proposed using the many-facet Rasch
measurement (MFRM) to examine the CIV because this measurement model can compare
different CIV factors on a shared scale. To demonstrate how to apply this framework, we
applied the framework to a video-based science teacher pedagogical content knowledge
(PCK) assessment, including two tasks, each with three scenarios. Results for task I, which
assessed teachers’ analysis of student thinking, indicate that the CIV due to the variability
of the scenarios was substantial, while the CIV due to judging severity and rater scoring
sensitivity of the scenarios in teacher responses was not. For task II, which assessed
teachers’ analysis of responsive teaching, results showed that the CIV due to the three
proposed factors was all substantial. We discuss the conceptual and methodological
contributions, and how the results inform item development.

Keywords: construct-irrelevant variance (CIV), contextualized assessment, science, pedagogical content
knowledge (PCK), many-facet Rasch measurement, student thinking, responsive teaching

INTRODUCTION

Construct-irrelevant variance (CIV, also called error variance) is regarded as an important threat to
validity, especially for constructed response assessments with rich contextualized information
(Zaichkowsky, 1985; Haladyna and Downing, 2004; Geisinger et al., 2013). For example, Alonzo
and Kim (Zehner 2016) asked teachers to watch scenario-based teaching clips which provide rich
information and then asked them to provide constructed responses to questions. Contextualized
constructed-response items are deemed to be more authentic than multiple-choice items and,
consequently, examinees might be more likely to perform in a way that reflects their competency in a
given scenario (Peter, 2009; Peter et al., 2009; Rodger et al., 2009). However, “contextual features that
engage andmotivate one [examinee] and facilitate his or her effective task performances may alienate
and confuse another [examinee] and bias or distort task performance” (Messick, 1989, p. 19). That is,
the rich contexts or scenarios within the items might elicit examinees’ performance which does not
entirely reflect the construct of interest (COI), thus compromising the interpretation and use of the
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test scores. Besides the impact on examinees, literature has
suggested that, due to the involvement of complex contexts in
the testing tasks, scorers might also be confounded by such
irrelevant information when rating examinees’ constructed
responses (Marentette et al., 2012; Zhai and Pellegrino, in
press). This is because when the responses are more diverse,
human coders might not be able to differentiate if this variability
is caused by the COI or an irrelevant construct, which may cause
systematic bias in a rater’s scores (Lane, 2013). In all, estimating
and monitoring the CIV in contextualized constructed response
assessments is vital in securing a robust validity of the assessment.

Prior research on the CIV has mainly employed a linear
regression model or product-moment correlation to evaluate
the CIV (for example see Haladyna and Downing, 2004).
However, in constructed response assessment, the scores are
usually generated based on categorical or ordinal, rather than
interval, measurement, so that these two previous approaches
might not be applicable. Cronbach et al. (1972) suggested
generalizability theory, or G-Theory to monitor the CIV
(i.e., error variance). G-Theory employs analysis of variance
(ANOVA) to examine the CIV due to the rater, context, etc.
and can also determine how these factors contribute to CIV
(Shavelson et al., 1989; Clauser, 1999; Clauser et al., 2006).
However, as Linacre (1996) stated, G-theory could examine
the CIV but could not adjust examinees’ raw score for the
error variance. Moreover, there are limited studies that focus
on examining the CIV due to the scenarios in contextualized
items. The CIV involved in contextualized performance
assessment has not been specified in a given area such as
teaching performance in literature. Thus, there are both
conceptual and methodological gaps in investigating CIV.

This study intends to fill these gaps. First, we develop a model
to conceptualize three types of CIV in assessments employing
contextualized constructed response items. This model centers on
assessment task scenarios, which might impact both examinee
and rater performance, resulting in different types of CIV.
Second, we employ the many-facet Rasch measurement
(MFRM), which was first developed by Linacre (1989) to
examine and compare the CIV of the constructed response
scores. We choose the Rasch model because it can transfer
categorical data into continuous measures, therefore the CIV
drawn from different sources is comparable. Another advantage
of the Rasch model is that the examinee ability measures
calibrated by the MFRM have already been adjusted for the
locations of the CIV facets on the continuum that represents
the latent variable (Engelhard and Wind, 2017). Prior studies
have employed MFRM to examine error variance due to rater
severity and the assessment task (e.g., Engelhard, 1994; Myford
and Wolfe, 2003), but few studies have applied it to examine CIV
specifically due to the scenario of the assessment item. To
demonstrate the usefulness of this model and approach, we
apply the model in examining CIV in a video-based
assessment for testing in-service science teacher pedagogical
content knowledge (PCK) in two areas: Analysis of student
thinking and analysis of responsive teaching. In this example,
we employ a designed approach by controlling the COI but
varying the item scenarios so that we can examine the CIV

due to the variability of scenario, judging severity, and rater
scoring sensitivity of the scenarios. Finally, we discuss the
generalization of the model to contextualized assessments, the
methodology, and how to use the findings to revise the
assessments. This study answers this research question: How
can CIV be examined when using contextualized constructed
response assessments?

MODELING THE
CONSTRUCT-IRRELEVANT VARIANCE IN
CONTEXTUALIZED CONSTRUCTED
RESPONSE ASSESSMENT

In their seminal article, Construct Validity in Psychological Test,
Cronbach and Meehl (1955) introduced an innovative concept
termed construct validity created by the APA Committee on Test
Standards. They introduced the construct as the latent trait or
attribute of examinees that a test is intended to assess (e.g.,
teachers’ PCK), which should be reflected in test performance.
Haladyna et al. (2004) suggest that the identification of a
construct is the basis of designing a test and validating a
measure. Thus, from the perspective of validity, both the
interpretive and validity arguments should address the
construct that is usually predefined before item development
(Messick, 1989; Kane, 1992). The construct is usually regarded as
the test of interest and ideally should primarily account for the
variance of examinee’s performance in a test. However, unlike the
variance caused by the COI, the CIV is unintended and can lead
to issues in score interpretation (Messick, 1984). Lord and Novick
(1968) defined the CIV as a source of systematic error of scores
and suggested that CIV might threaten the validity, such as that
due to psychological or situational factors. In their definition,
Lord and Novick suggested that the CIVmight indicate a systematic
increase or decrease the assessment score for the examinees.
Following Lord and Novick (1968), the Standards (AERA &
NCME, 2014) further extended this concept by stating that any
bias that results in systematic higher or lower scores is CIV.

Given the broad definition of CIV, many sources might cause
CIV, such as test preparation, test development and
administration, scoring, examinee preferences, and cheating
(Gallagher et al., 2002; Haladyna and Downing, 2004). In this
study, we focus on aspects that are most likely to be directly
impacted by the involvement of contextual scenarios in a
constructed response assessment. Therefore, some general
aspects, such as test preparation, administration, and cheating,
which are not unique to contextualized constructed response
assessments, are not included in the model for the current study.
Because of this, we primarily consider sources from two aspects
that might account for the CIV in this contextualized assessment:
examinees and raters who might cause CIV due to the variability
of assessment task scenarios.

Many prior studies (Haladyna, 1992; Boaler, 1994; Ferrara
et al., 1997; Klassen, 2006; Zhai et al., 2019b) have shown that by
involving scenarios in assessment items, respondents’
performance on the test will be impacted. Typically, items
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with rich scenarios elicit respondents’ thinking and
understanding because they are aligned to a real-life situation.
This effect positively serves the interpretation and use of scores by
creating a recognizable context for the respondents. However, in
some cases, rich scenarios draw negative effects, thus leading to
CIV. For example, Boaler (1994) found that boys might perform
better than girls in math tests involving gender-biased scenarios
(e.g., football), which is a reasonable source of systematic bias or a
CIV. Another example in an international test focusing on
physics is that, test developers typically use specific objects,
such as refrigerators, to develop the scenario. However, a
group of students in developing countries without the
experience of using or seeing refrigerators in real life might
struggle with understanding that scenario and applying their
knowledge in problem-solving. In these cases, the scenarios may
elicit systematic bias and are a source of the CIV. Many similar
examples to illustrate possible sources of CIV could be cited (e.g.,
Heritage et al., 2009), but what we are interested in is the common
effect of these issues on examinees’ scores. In this study, we
specify this impact as an item difficulty variation (i.e., CIV) due to
the scenario involvement and variability. That is, the item
difficulty varies once the scenarios change, which is not
expected otherwise. This CIV might reflect systematic bias on
certain groups of respondents or even the entire sample at varying
degrees.

Given that we focused on constructed response assessment,
judging severity is considered as another major source of the CIV
(Ebel and Frisbie, 1986; Engelhard, 1992; Zhu et al., 1998;
Goodwin, 2016; Ooi and Engelhard, 2019). Theoretically, it is
unreasonable to assume that each rater would interpret the
rubrics in the same manner when scoring, because each rater
may have a different understanding of the assessment or use
different interpretations of examinee responses or have different
cognitive abilities to interpret complex responses (Wind, 2020).
In this sense, the judging severity might result in systematic bias
on examinee scores. Unlike the scenario variation, judging
severity is a personal characteristic of the raters and is not
typically specified within the item scenarios.

The involvement of scenarios in contextualized assessment
results in an interaction between the scenario and the raters’
judgment, which leads to another type of CIV. Due to the
variability of the scenarios, the examinee responses or
performance might vary, for example, to be more complex or
to be simpler. This may significantly impact the raters’
interpretation of the responses constrained to their knowledge,
understanding of the responses, and cognitive ability (Crooks
et al., 1996). We consider this systematic bias due to the scenario
variability as a third source for CIV. Since this CIV is associated
with both the scenario and the rater, we note it as rater scoring
sensitivity of scenarios to be distinctive from judging severity.
Ideally, raters should be more sensitive to the COI, while less
sensitive to the CIV, and thus their assigned scores could better
reflect the intended use of the scores. However, this might not
always be the case in practice, thus, an investigation is necessary.

Drawing upon the potential sources of CIV described above,
we propose the following model to account for the major CIV for
contextualized constructed response assessment,

Yijk � yi + tk + ci + sjk + er,

where, Yijk is the score awarded to examinee i by judge (i.e. rater) j
on a given item with scenario k. yi is the portion of examinee i’s
score due to COI. tk is the variance of examinee i’s score due to the
variability of the scenario. ci is the variance of examinee i’s score due
to the judging severity. sjk is the variance of examinee i’s score due to
the judge’s sensitivity of the scenario, and er is the random error.

APPLYING THE MANY-FACET RASCH
MEASUREMENT

Rasch modeling has many advantages as opposed to classical
testing measurement models. One of the most important
advantages is that Rasch modeling can transfer categorical
data into continuous measures, such as examinee ability or
item difficulty (Engelhard and Wind, 2017). More importantly,
it positions all the measures in a shared logit scale so that the
parameters are comparable. A traditional Rasch model has two
facets: examinee ability and item difficulty. These two facets do
not include any external variance, such as judging severity.
Therefore, if exterior factors impact the scoring, the data
would not meet the requirement of the model, and thus less
likely to predict examinee ability. Linacre (1989) extended the
Rasch model by including more facets in the model, such as
judging severity or tasks used in the test into the traditional two-
facet Rasch model, so that the multi-facet model can exclude the
external variance when calibrating examinee ability measures. In
their prior study, Chi et al. (2019) applied this approach to
investigate disciplinary context effect on student scientific
inquiry competence. Zhai and Li (2021) applied this approach
to validate how fundamental ideas in science could help improve
the validity of assessment practices using multiple-choice items. In
our study, in order to analyze categorical data from a constructed
response assessment and examine the sources of external variances,
we employed Linacre’s MFRM. Using theMFRM, we can compare
the CIV from different sources within a shared logit scale.

A four-facet (i.e., examinee ability, item difficulty, judger
severity, and the sensitivity of judges to the specific scenario)
Rasch measurement model is proposed as,

log( Pnijk

Pnij(k−1)
) � Bn −Di − Fk − Cj − Sij,

where, Pnijk represents the probability that examinee n is awarded
a score of k on the item with scenario i by the rater j; Pnij(k−1)
indicates the probability that examinee n is awarded a score of k-1
on the item with scenario i by rater j; Bn is the ability measure for
examinee n; Di is the difficulty measure of the item with scenario
i, Fk is the difficulty measure of stepping from rating level k-1 to k.
The Cj represents the judging severity of rater j, and the Sij
represents the judge j’s scoring sensitivity to the item with
scenario i.

To better understand if the parameters within a facet are
homogenous for the samples or not, we need separation measures
to estimate the equality of the parameters. For example, we must
evaluate whether the judging severity across the raters are
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significantly different from each other. This outcome will help us
decide if the variance in a facet is substantial. In this study, we
defined three parameters: Separation reliability, the variance of
the parameter estimated, and the Chi-square for parameter
equality. The Chi-square test will accompany the separation
reliability to test for significance. For the separation reliability,

R � s −∑T
i�1 τi
s

,

where s is the variance of the parameter estimates,

s � 1
T − 1

∑T
i�1

(δi − δ0)2,

and the Chi-squared value is,

X2 � ∑T
i�1

δ2i
τi
,

where, δi is the estimated parameter in the facet, δ0 is the mean of
the estimated parameters, τi is the estimated error variance, T is
the total number of the parameters. According to the definition,
the separation of reliability is a measure ranged from 0 to 1. A value
close to 0 indicates the parameters are homogeneous, while a value
close to 1 indicates the parameters are heterogeneous. The larger
the value of the Chi-square, the more heterogeneous the
parameters, and therefore the greater the CIV.

EMPIRICAL STUDY AND METHODS

Context
The dataset used in this study comes from a larger research
project that is developing and validating a measure of science
teachers’ PCK, the professional knowledge of teachers that
bridges science content knowledge, and how to effectively
teach the content in classrooms (Shulman, 1986). For this
study, we developed a design approach incorporating two
video-based constructed response testing tasks tapping 1)
analysis of student thinking (i.e., Task I) and 2) analysis of
responsive teaching (i.e., Task II). Each task was assessed in
three different scenarios present in the video clips. Using Zhai
et al. (2019a) visualized framework for MFRM, scores generated

for each examinee are presented in Figure 1. We are interested in
examining the CIV involved in the assessment in order to inform
future item development and revision.

Teacher PCK is a significant predictor of both high-quality
classroom practice and student achievement in science (Keller
et al., 2017). Consequently, PCK is a common outcome in many
studies of professional development and teacher education
interventions and is therefore an important construct to measure
(Chan and Yung, 2015; Gelfuso, 2017; Grammatikopouloset al.,
2019). Most measures of PCK situate their approach in the assertion
that, since PCK is the professional knowledge of teachers, it is visible
in the professional work of teachers, which involves planning,
teaching, and reflecting (Wilson et al., 2019). Planning measures
ask teachers to write about the topics they are going to teach, what
their lessons will involve, and to describe reasons for those
instructional decisions; teaching measures use teachers’ classroom
practice as evidence of their PCK, and reflecting measures occur
following instruction, and involve teachers discussing their reasons
for instructional moves. In this study, we asked teachers to analyze
video clips of other teachers’ teaching and scored their constructed
responses to infer their PCK.

Sample
The sample analyzed here comes from a national sample of 187
science teachers in the United States teaching grades 3 through 10,
with 12.3% teaching grades 3–5, 49.3% teaching grades 6–8, and
38.5% teaching grades 9–12. These teachers had a range of
1–50 years of teaching experience, with an average of 16 years of
experience and 77.5% of the sample self-identified as female. In
order to obtain a sample that included teachers with more advanced
science PCK, we focused our recruitment on teachers that had
recently experienced high-quality science professional development
or were presidential awardees in the area of science or were certified
to teach science by the National Education Association.

Instrument
The instrument in this study uses a teacher’s analysis of another
teacher’s classroom teaching video as evidence of their PCK.
These video clips were identified from full-length science lessons
recorded in elementary school classrooms in the United States.
The initial video selection process was intended to target video
clips that were most likely to elicit the sub-constructs of interest.
Four experts with comprehensive knowledge of the sub-
constructs of interest and content knowledge in elementary
science viewed the pool of videos and then came together to
agree on the most appropriate video clips. Eventually, the group
of experts selected 11 video clips according to the content analysis
and piloted the video clips with 192 science teachers to test the
extent to which each of the eleven videos elicits the sub-
constructs. Eventually, we chose three videos (S1, S2, and S3)
to be used as the instrument in this project. These videos included
a fourth-grade classroom learning about air resistance (video
scenario 1), a fifth-grade classroom learning about condensation
on the outside of soda can (video scenario 2), and a fifth-grade
classroom learning about distillation (video scenario 3) (the
content of the video clips is presented in Supplementary
Table S1, Zhai et al., 2020).

FIGURE 1 | Score structure of the research design.
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Each of the three video clips had a different teaching context
(e.g., teaching the evaporation of water), which we refer to as the
scenario for our study. For each clip, teachers first read a short
summary of the classroom context and then watch a 3–5-min
video clip of another teachers’ classroom instruction. The video
clips were chosen to reveal two specific dimensions of PCK, which
we refer to as student thinking (i.e., Task I) and responsive
teaching (i.e., Task II). After viewing the classroom video clip,
teachers were asked to write about the teaching and learning
visible in the video and provide analytic comments. The
instrument targeted teacher knowledge of student thinking
and responsive teaching through two prompts. The first
prompt asks, “What do you notice about the student ideas
related to the science content in this video?” The second
prompt asks, “What do you notice about how the teacher
responds to student ideas related to the science content in this
video?” This latter question targeted whether the respondents
could identify how the teacher in the video connected what the
students were thinking to how the teachers in the video
responded to that thinking.

Rubrics and Scoring
A rubric was developed that targeted the student thinking and
responsive teaching elements. To receive a positive score for 1)
student thinking, the respondent needed to first reference student
thinking and then connect that thinking to domain-specific
scientific vocabulary. To receive a positive score for 2)
responsive teaching, the respondent needed first make an
observation about how the teacher responded to the student
thinking about the science idea and then discuss a purpose for
that teacher response (for example responses and codes refer to
Supplementary Table S1). Three experts (i.e., Tony, Emer, and
Lacie) with knowledge in elementary science teaching, PCK, and
scoring experience were recruited for this scoring. After completing
a training process, each of the three raters was randomly assigned
to more than half of the data set, with each item scored by two
raters. Inter-rater reliability was calculated between every two
raters for each task: Task I: kte � 0.869, ktl � 0.882, kel � 0.878.;
Task II kte � 0.520, ktl � 0.428, kel � 0.496. Task II has a lower
interrater agreement than task I, which suggests that task II might
be more challenging for raters to score and reach an agreement
than task I. This might be due to those responding teachers have
multiple alternative options to suggest how to respond to student
thinking, which made the responsive teaching more complex for
raters to agree on assigned scores. Discrepancies between raters
were resolved by discussion among the raters.

Data Collection
Data collection occurred through the Qualtrics survey platform.
After completing a consent form and responding to inclusion
criteria questions (current teaching status and grade level),
teachers were randomly assigned to video order. Then,
teachers viewed three video clips and responded to the two
prompts after each video. At the end of the survey, teachers
responded to a series of demographic questions. The entire task
took around 30–40 min to complete.

Analysis
Since the two tasks are associated with the COI, we applied the
MFRM approach to the two tasks, respectively. We identified
three facets and an interaction in the many-facet Rasch model:
examinee (i.e., teachers), scenario, judging severity, and the
interaction between rater and the scenario (to reflect the CIV
due to rater scoring sensitivity to the scenario). We used
Conquest 2.0 (Wu et al., 2007) to analyze the data.

RESULTS

To investigate our research question, we first examine the
statistics of the measurement model fit and then present data
for the CIV for each of the two tasks.

Statistics of the Measurement Model
To confirm that the item response model fit the observed scores,
we first examined the outfit MNSQ and infit MNSQ for the scores
assigned by each rater on each scenario for the two tasks. MNSQ
is suggested by Rasch (1960) as the outfit and infit values to
control the applicability of the fit between the observed values and
the expected values in the model. Both measures are calibrated
based on the sum of standardized residuals and the degrees of
freedom, while the outfit MNSQ is also weighted by the number
of observations and is more sensitive to extreme responses. In
contrast, the infit MNSQ is more sensitive to responses when the
item difficulty is comparable to the person’s ability. The value of 1
for both measures indicates a perfect fit of the observed data and
the model, while Linacre (2002) suggests that a range from 0.5 to
1.5 is productive for measurement. In our case, all the observed
measures of both outfit and infit MNSQ lie in the productive
range for both assessment tasks. However, two outfit MNSQ
values of task I and two outfit MNSQ values for task II are located
outside the 95% confidence interval, which may suggest they
are less productive for the construction of the measure (see
Table 1).

We also examined classical testing model statistics by checking
the combination of three raters and three item scenarios, which
will further evaluate the fit of the items. Each of the combinations
is regarded as one separate generalized item with a dichotomous
rating. Thus, each teachers’ ability measure is calculated based on
the scores of nine generalized items for each task. Our findings
did not show extreme teacher responses, and the percent of
teachers’ responses of both 0 and 1 are mainly and reasonably
located in the range of 30–70%. The point-biserial correlation,
calibrated between the categories of responses and the teachers’
total score, consistently increases with the category scores, as is
desired (see Table 1). The teacher average ability (PV) measure
and the standard deviation (SD) for each response category of the
generalized items are calculated, and the measure confirms that
teachers with higher average ability are better awarded for all 18
items. The discrimination measure, which is the product-
moment correlation between the raw score on this item and
the total raw score of all the items for a person, has a fairly good
value, with a mean � 0.69, SD � 0.071 for both tasks.
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Construct-Irrelevant Variance for the PCK
Assessments
Task I Student Thinking
We plotted the measures of the MFRM for the student thinking
task on a Wright map (see Figure 2). The Wright map includes
four panels: the far-left panel represents the teachers’ ability, the
second panel represents the scenario (or item difficulty), the third
panel represents the judging severity, and the last panel (i.e., far
right) represents the interaction of the scenario and the rater. All
the measures for these panels share a scale (at far left, from -6 to 7
logits) so that all the values across panels are comparable. The
allocation of the numbers or characters within each bin indicates
the value for each of the measures. In the many-facet Rasch
model, the average value for each of the facet, except the examinee
facet, is set to be zero so that the examinee ability measures could
be calculated uniquely. In our case, the sign of x (note: each x

represents 1.4 teachers) in the teacher panel represents teachers’
posterior ability measure, which ranges from −4.8 to 7 (with a
variance of 4.807), and the teachers are normally distributed on
this scale, M � 0.645, SD � 2.192. In the following sections, we
introduce the right three panels which represent the CIV on the
Wright map, in detail. The variance and the separation measures
are calculated respectively for a better understanding of the CIV
in this task and their significance (see Table 2).

Variance of Difficulty Due to Scenarios
On the scenario panel of the Wright map (Figure 2), the
corresponding values of the position of the labels for 1, 2, and
3 represent the difficulty of the item (student thinking) within the
video scenario of S1, S2, and S3, respectively. The higher of the
values, such as S3, indicates the item with this scenario is more
challenging for teachers than the items with the other scenarios.

TABLE 1 | Statistics of the measurement model Task I (Student Thinking) and Task II (Responsive Teaching).

Rater Scenario Item response model fit Classical testing model fit

Outfit
MNSQ

CI T Infit
MNSQ

CI T Score Count
(# %)

Pt bis t (p) PV (SD) Disc

Task I
Tony S1 0.74 (0.76, 1.24) −2.3 1.02 (0.77, 1.23) 0.2 0 56 (43) −0.66 −10.05 (0.000) −1.10 (1.69) 0.66

1 74 (57) 0.66 10.05 (0.000) 1.70 (1.91)
S2 1.45 (0.76, 1.24) 3.2 1.19 (0.76, 1.24) 1.5 0 52 (40) −0.72 −11.66 (0.000) −1.16 (1.67) 0.72

1 79 (60) 0.72 11.66 (0.000) 1.61 (1.81)
S3 0.83 (0.75, 1.25) −1.4 1.00 (0.78, 1.22) 0.0 0 56 (44) −0.72 −11.60 (0.000) −0.97 (1.65) 0.72

1 71 (56) 0.72 11.60 (0.000) 1.67 (1.87)
Emer S1 0.72 (0.77, 1.23) −2.5 0.96 (0.75, 1.25) −0.3 0 54 (39) −0.72 −12.33 (0.000) −1.37 (1.69) 0.72

1 86 (61) 0.72 12.33 (0.000) 1.69 (2.04)
S2 0.91 (0.76, 1.24) −0.7 1.02 (0.77, 1.23) 0.2 0 56 (42) −0.77 −13.86 (0.000) −1.39 (1.69) 0.77

1 76 (58) 0.77 13.86 (0.000) 1.76 (1.80)
S3 0.75 (0.75, 1.25) −2.2 0.91 (0.76, 1.24) −0.7 0 59 (47) −0.78 −14.02 (0.000) −1.19 (1.68) 0.78

1 66 (53) 0.78 14.02 (0.000) 1.89 (1.81)
Lacie S1 0.98 (0.75, 1.25) −0.1 0.87 (0.73, 1.27) −1.0 0 53 (42) −0.79 −14.38 (0.000) −1.44 (2.10) 0.79

1 72 (58) 0.79 14.38 (0.000) 2.38 (1.90)
S2 1.04 (0.75, 1.25) 0.4 1.10 (0.71, 1.29) 0.7 0 43 (34) −0.76 −12.98 (0.000) −1.73 (2.05) 0.76

1 83 (66) 0.76 12.98 (0.000) 2.07 (1.92)
S3 0.96 (0.75, 1.25) −0.3 0.97 (0.74, 1.26) −0.2 0 55 (44) −0.81 −15.29 (0.000) −1.38 (1.94) 0.81

1 69 (56) 0.81 15.29 (0.000) 2.47 (1.78)
Task II

Tony S1 1.15 (0.76, 1.24) 1.2 1.10 (0.80, 1.20) 0.9 0 80 (62) −0.63 −9.10 (0.000) −1.16 (1.59) 0.63
1 49 (38) 0.63 9.10 (0.000) 0.49 (1.25)

S2 0.93 (0.76, 1.24) −0.6 1.03 (0.81, 1.19) 0.3 0 81 (62) −0.63 −9.17 (0.000) -1.14 (1.52) 0.63
1 49 (38) 0.63 9.17 (0.000) 0.51 (1.28)

S3 0.98 (0.75, 1.25) −0.1 1.03 (0.82, 1.18) 0.4 0 57 (45) −0.59 −8.27 (0.000) −1.50 (1.58) 0.59
1 70 (55) 0.59 8.27 (0.000) 0.20 (1.26)

Emer S1 1.31 (0.76, 1.25) 2.3 1.17 (0.81, 1.19) 1.7 0 74 (58) −0.58 −7.96 (0.000) −1.35 (1.70) 0.58
1 54 (42) 0.58 7.96 (0.000) 0.30 (1.30)

S2 0.68 (0.76, 1.25) −2.8 0.77 (0.76, 1.24) −1.9 0 98 (77) −0.64 −9.25 (0.000) −1.05 (1.57) 0.64
1 30 (23) 0.64 9.25 (0.000) 0.76 (1.29)

S3 1.14 (0.75, 1.25) 1.1 0.97 (0.78, 1.22) −0.2 0 86 (69) −0.65 −9.50 (0.000) −1.24 (1.53) 0.65
1 39 (31) 0.65 9.50 (0.000) 0.76 (1.23)

Lacie S1 0.89 (0.75, 1.25) −0.9 0.96 (0.81, 1.19) −0.4 0 72 (58) −0.66 −9.68 (0.000) −1.23 (1.42) 0.66
1 53 (42) 0.66 9.68 (0.000) 0.28 (1.44)

S2 1.04 (0.75, 1.25) 0.3 1.07 (0.82, 1.18) 0.8 0 65 (52) −0.63 −9.09 (0.000) −1.45 (1.43) 0.63
1 60 (48) 0.63 9.09 (0.000) 0.26 (1.21)

S3 1.06 (0.77, 1.23) 0.5 0.96 (0.81, 1.19) −0.4 0 94 (63) −0.68 −11.12 (0.000) −1.26 (1.43) 0.68
1 54 (36) 0.68 11.12 (0.000) 0.46 (1.19)

Note. Bold font indicates that the value is out of benchmark. CI, Confidence Interval; Pt bis, point-biserial correlation; PV, average person ability; Disc, item discrimination.
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Since the variability of the difficulty comes from the varied
scenarios involved in the tasks which results in a portion of
the CIV, it is necessary to examine and monitor the variability of
the difficulty measures due to the scenarios. For task I, we found
the variance is 0.076.

To understand the substance of the variance measure, we
further calculated a set of separation measures including the
separation reliability and the Chi-square test of parameter
equality. Separation reliability indicates the extent to which the
item parameters are separated from each other (Wright & Stone,
1979). In a given facet, like the Scenario facet, this index indicates
to what extent the item difficulty is different due to the scenarios.
A value close to 1 indicates that the parameters are entirely
separated, or the elements of the group are heterogeneous, while a
value close to 0 indicates less separation in the parameters, or the
elements of the group are homogeneous. In the Scenario facet of
task I, the separation reliability is fairly substantial, 0.547. Since
the separation reliability rises with increasing sample sizes, a Chi-

square test of equality is performed. In the Scenario facet, the Chi-
square test indicates that the difficulty values of the item with the
three scenarios are significantly different, χ2(2, N � 3) �
6.05, p � .049. As shown in Figure 2, the scenario S3 item is
most challenging, while S2 is the least challenging (specific
difficulty values see Table 2).

Variance of Judging Severity
In the third panel of the Wright map (Figure 2), the raters Tony,
Emer, and Lacie are ploted, and the values on the logit scale
corresponding to the location of their names indicate their
judging severity. A higher value of judging severity indicates
that the corresponding rater is more severe when assigning scores
to teacher responses. For task I, the three raters had almost equal
judging severity since each was positioned similarly on the
vertical scale. Variance across the three raters is only 0.001,
equalling only 1.3% of the variance due to the diversity of the
scenarios. The separation reliability, 0.000, suggests homogeneity

FIGURE 2 | Wright map of the Student Thinking (task I).
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of judging severity across the three raters. Finally, the Chi-square
test confirmed the homogeneity, χ2(2, N � 3) � 0.160, p � .923.

Variance of Rater Scoring Sensitivity Toward Scenarios
The rater scoring sensitivity toward the scenarios is indicated in
the fourth panel in theWright map (Figure 2). Each combination
of the raters and the scenarios is represented by a two-part code,
resulting in values for the three scenarios and the three raters. The
first part of the code, as in S1.Lacie, represents the scenario
(i.e., S1) and the second part (i.e., Lacie) represents the rater
(i.e., Rater Lacie). A higher position of the code, which is
represented by the location on the Wright map, indicates that
the rater tends to assign lower scores to teachers for the given
scenario. From Table 2, we observed the variability of the rater
sensitivity, and the actual variance calibrated based on the nine
measures is 0.033, which is equal to 43% of the variance due to the
scenario. The separation reliability is 0.586. However, the Chi-
square of parameter equality suggests that the difference in rater
sensitivity is not significant, χ2(2, 9 � 3) � 7.280, p � .122.

Task II Responsive Teaching
The measures of the many-facet Rasch model for task II are
plotted in Figure 3. The means of the three facets (i.e., the
difficulty of scenario, judging severity, and rater sensitivity) are
set as 0 respectively as we did for task I. The left-most panel
indicates that the teacher ability ranges from -4.6 to 2.8 (with a
variance of 1.441), which is significantly more centred than that
on task I (i.e., −4.8–7.0, with a variance of 4.807). A paired-
samples t-test was conducted to compare teacher ability measures
on task I and task II. Results indicate a significant difference in the
ability on task I (M � 0.645, SD � 2.192) and on task II (M �
−0.606, SD � 1.200); t (202) � 8.262, p � 0.000, Cohen’s d � 0.578.
These results suggest that there are significantly different
challenges between the two tasks for teachers. Since the two

tasks shared the same video-clip scenarios, the same teachers
replied to the items in the same fashion, and the same raters were
employed to rate teachers’ response, we suspect that the
differences of teachers’ ability measures reflect that the
construct underlying task II is significantly more challenging
for teachers than task I. Next, we present the CIV for assessing
Responsive Teaching in task II. Please note the meaning of the
labels in Figure 3 is identical to those in Figure 2.

Variance of the Difficulty Measure Across the Three Scenarios
The variance of difficulty due to scenarios is 0.034 for task II
(Table 3). In comparison to task I, in which scenario S3 is most
challenging, the S2 scenario in task II (M � 0.212, SE � 0.088) is
most challenging for teachers, and S1 (M � -0.113, SE � 0.087) is
least challenging. To examine the homogeneity of the scenario
facet, we calibrated the separation reliability, which is fairly high,
0.854. Chi-square test for parameter equality confirms that the
difficulty measures associated with the three scenarios are
significantly different for task II, χ2(2, N � 3) � 7.440, p � .024.

Variance of Judging Severity
The variance of the judging severity for task II is 0.128, which is
almost four times of that due to the scenarios. Also, the variance
of judging severity is different from that of task I, where the
judging severity is minor (0.001). This substantial change of
variance due to judging severity between tasks is because that
the COI of the two tasks is different, which may require different
cognitive activities for raters to score the teacher responses. We
suspect the changes in the cognitive level might be accounted for
the variability of judging severity. The separation reliability is
extremely high, 0.961, which suggests a heterogeneity of judging
severity. It seems that rater Emer held the most severe standards
(M � 0.413, SE � 0.089) when scoring teachers’ responses, while
rater Tony is least severe (M � -0.214, SE � 0.086). The Chi-

TABLE 2 | Variance and separation measure of the four facets for Task I.

Parameter Teacher Scenario Rater Scenario*Rater

Values for each facet (SE)
1 — −0.036 (0.105) −0.018 (0.106) 0.070 (0.130)
2 — −0.257 (0.105) 0.039 (0.107) 0.064 (0.129)
3 — 0.292 (0.149) −0.021 (0.150) -0.135 (0.183)
4 — — — −0.268 (0.131)
5 — — — 0.210 (0.131)
6 — — — 0.058 (0.185)
7 — — — 0.197 (0.184)
8 — — — −0.274 (0.184)
9 — — — 0.077 (0.261)

Variance measure
Variance 4.807 0.076 0.001 0.033
Mean 0.645 0.000 0.000 0.000
N 203.000 3.000 3.000 9.000

Separation measure
Separation reliability — 0.547 0.000 0.586
χ2 test for parameter equality — 6.050 0.160 7.280
Degrees of freedoms — 2.000 2.000 4.000
p-value — 0.049 0.923 0.122

Note. The numbers (i.e., 1–9) under Values for theScenario*Rater facet correspond to: 1 �S1*Tony, 2 �S2*Tony, 3 �S3*Tony, 4 �S1*Emer, . . . 9 �S3*Lacie. This definition is also applied
to Table 3.
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square test for parameter equality further suggests that the
difference of judging severity across the three raters is
significant, χ2(2, N � 3) � 27.990, p � .000.

Variance of Rater Scoring Sensitivity Toward Scenarios
The CIV (0.184) due to the rater scoring sensitivity is almost
six times as that due to the scenario. The separation reliability
is also extremely high at 0.941. The Chi-square test for
parameter equality supports this heterogeneity of rater
sensitivity of the scenarios, χ2(2, N � 3) � 54.710, p � .000.
Also, this result is different from the findings from task I,
which might support the hypothesis that the rater scoring

sensitivity to scenarios is a combination of the scenario and
the rater’s cognitive ability and therefore might be impacted by
the complexity of the construct the assessment is tapping.
Looking through the exact values, we find that each of the
three raters is fairly sensitive to each of the three scenarios,
which suggests, each rater might have applied the specific
criteria differently for different scenarios. For example, for
scenario S1, Tony holds a highest standard to assign scores (M
� 0.414, SE � 0.105), while Emer holds a lowest standard to assign
scores (M � -0.526, SE � 0.107). In contrast, for scenario S3, Tony
(M � -0.575, SE � 0.148) holds a lower standard than Emer (M �
0.141, SE � 0.153) to assign scores.

FIGURE 3 | Wright map of the Responsive Teaching (task II).
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DISCUSSION

A prerequisite of validity is that the scores assigned to examinees
represent the underlying COI. Without meeting this criterion, the
interpretation and use of these scores would be problematic.
However, it can be difficult to ensure that this criterion is met due
to multiple complicating factors, especially for constructed
response assessments with a performance-based measure that
involves rich contexts (Lane and Iwatani, 2015). Concerning the
increasing use of constructed response assessments due to the call
for performance-based measures in science education (NRC,
2012), it is essential to develop a model to identify and
measure the factors that may lead to CIV being involved in
these assessments. To address this need, this study developed a
model to conceptualize the CIV for contextualized constructed
response assessment and proposed an MFRM approach to
examine the CIV. We also suggest a design approach to
control the COI and vary the scenarios when developing
constructed response assessments, as demonstrated in the
empirical study, to investigate the CIV due to different
sources. By using the MFRM approach, the outcome
(i.e., measure of examinee ability) should be more reliable
because the identified CIV are subsequently excluded from the
variance of the examinee ability. Therefore, this study makes
conceptual, methodological, and practical contributions to
the field.

The model we developed includes three sources that might
contribute to CIV in contextualized constructed response
assessment: the variability of scenarios, judging severity, and
rater sensitivity of the scenarios. To be noted, the CIV can be
feasibly examined only through the design approach, such as we
demonstrated in this study. Otherwise, it is difficult to separate
and examine the CIV from different sources. Though the primary
goals of this study are to develop such a model, provide a
methodology to examine the CIV, and empirically validate the
model, we argue that this model could be extended to examining

CIV in future studies in other contexts and with different sources
of CIV. First, the facets could be specified with regard to specific
characteristics of the assessment task and/or scoring process, and
the model could be modified to examine how these characteristics
contribute to CIV. Taking the scenario facet as an example, it
might be that the setting or the sources of the context contribute
to CIV more significantly than others (Ruiz-Primo and Li, 2015).
By deliberately identifying these key characteristics and including
them in a study design for controlling the COI, we could extend
the model to better understand the setting or sources of context
impacting the CIV. Second, the model could be generalized to
other facets of interest to better understand general characteristics
inherent within the item (e.g., length of the item stem or format),
the potential bias from the rater (e.g., rater’s experience), and the
interaction between the rater characteristics and the item
characteristics, among other potential facets.

This study employed the MFRM to examine the CIV, in order
to produce more reliable examinee ability measures. By using the
MFRM, we could compare the CIV due to different factors on a
shared logit scale so that the contribution of each aspect is
comparable. Also, the CIV due to components within each
facet is quantified and comparable. MFRM has been employed
in prior studies to examine CIV due to the variability of raters or
tasks (e.g., Engelhard, 1996; Myford andWolfe, 2003), yet none of
the prior studies conceptualized and examined the CIV due to
scenarios. The design approach is valuable in examining CIV in
accompany with the MFRM approach, which, to our knowledge,
has seldom been employed in prior studies. Both the MFRM and
the design approach make a unique contribution for researchers
to examine CIV due to sources such as scenarios. To be noted,
MFRM is equally as useful as the G-Theory that was proposed by
Cronbach et al. (1972) to examine andmonitor the error variance.
However, the G-Theory cannot adjust examinees’ raw score for
CIV, while the MFRM could. This is because, as argued by
Linacre (1996), the MFRM has already excluded the CIV (e.g.,
due to the judging severity or task variability) when calibrating

TABLE 3 | Variance and separation measure of the four facets for Task II.

Parameter Teacher Scenario Rater Scenario*Rater

Values for each facet (SE)
1 — −0.113 (0.087) −0.214 (0.086) 0.414 (0.105)
2 — 0.212 (0.088) 0.413 (0.089) 0.161 (0.104)
3 — −0.099 (0.124) −0.199 (0.123) −0.575 (0.148)
4 — — — −0.526 (0.107)
5 — — — 0.385 (0.109)
6 — — — 0.141 (0.153)
7 — — — 0.112 (0.149)
8 — — — −0.546 (0.151)
9 — — — 0.434 (0.213)

Variance
Standard variance 1.441 0.034 0.128 0.184
Mean −0.606 0.000 0.000 0.000
N 203.000 3.000 3.000 9.000

Separation measures
Separation reliability — 0.854 0.961 0.941
χ2 test for parameter equality — 7.440 27.990 54.710
Degrees of freedoms — 2.000 2.000 4.000
p-value — 0.024 0.000 0.000
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examinee ability measures. In addition, theMFRM is flexible so that
it remains applicable to situations when the model is modified, for
example, in the above-mentioned cases for testing specified
characteristics. Also, the MFRM could potentially still be
applicable to examine other characteristics of the assessment,
even when the model of CIV is changed.

The results of this study have implications for assessment
developers to create and refine the contexts of science
assessments. Without a comprehensive understanding of
the effect of contexts, assessment developers may have difficulty
appropriately equivalizing item contexts (Heritage et al., 2009).
Resulting differences in item contexts may either positively engage
participants in authentic assessment, and thus enhance the
relationship between test scores and the COI, or might
negatively distract participants from being focused on the
question and thus increase the CIV in the test. Our approach
has the potential to inform teachers to better understand what role
the item context plays in assessments. For example, in our study,
we found the scenarios provided within video clips is a source that
significantly contributes to the CIV. This information reminds the
assessment developers to control the variability of the scenarios
when assessing teacher PCK. Otherwise, for example, it will be hard
to implement contextualized assessments if different assessment
scenarios yield scores favoring different conclusions. Given the
significant impact of the scenario on the scores, assessment
developers also should reflect on which characteristics of the
scenarios are necessary in the assessment in order to assess PCK.

Also, results from task II indicate that the raters are sensitive to
the scenario, while results from task I suggest that the raters are not.
The results inform item developers to re-examine the rubrics and
the examinee responses to recognize whether specific information
from the scenario may bias the raters’ decision. Many prior studies
(e.g., Bejar, 2012; Crisp, 2012) have suggested a rater’s cognitive
process might be impacted by multiple factors, yet few studies
indicate how the scenarios provided within an assessment impact a
rater’s cognition and performance. In the area of teacher education,
few studies have examined CIV due to assessment scenarios, which
should be addressed in future studies.

This study does have some limitations. First, as a
methodological study and as part of a larger project, we did
not deeply examine the specific features of the scenario inherent
in the videos and other rater characteristics, other than the severity
and their sensitivity to the scenarios. Instead, we intend to provide
a framework to conceptualize and examine the CIV. In addition,
we did not investigate the mechanism of how the CIV identified in
this studywas produced in the empirical findings. These interesting
questions will be explored in future studies.

CONCLUSION

Compelling assessments in science education have become
demanding given the complex constructs targeted and that

assessments increasingly include constructed responses and
performance-based measures (NRC, 2012). This study seconds
the point that researchers must explicitly identify the COI and the
potential sources for CIV and use measurement models to
examine the COI. Following this line of research, we
specifically focus on the context involved in a constructed
response assessment, as well as how this context may result in
CIV. The three factors we proposed, the variability of assessment
item scenarios, judging severity, and rater scoring sensitivity to
the scenarios, are critical for validity and should be taken into
consideration when using contextualized constructed response
assessments, such as the PCK measure in this study. We propose
to use MFRM to examine the CIV and COI, which not only
measures the CIV but also excludes CIV from COI. This study also
proposes a design approach to controlling for COI, which could be
applied in examining CIV for other complex assessments in science
education (Beyer and Davis, 2009; Zhang et al., 2011; Shermis,
2015; Lottridge et al., 2018).
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