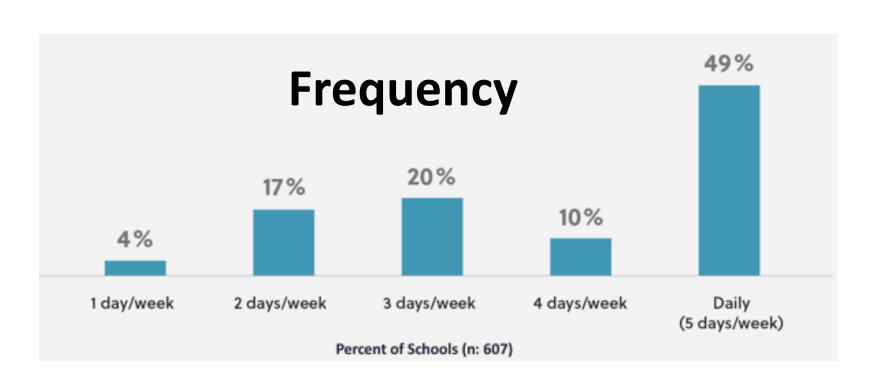


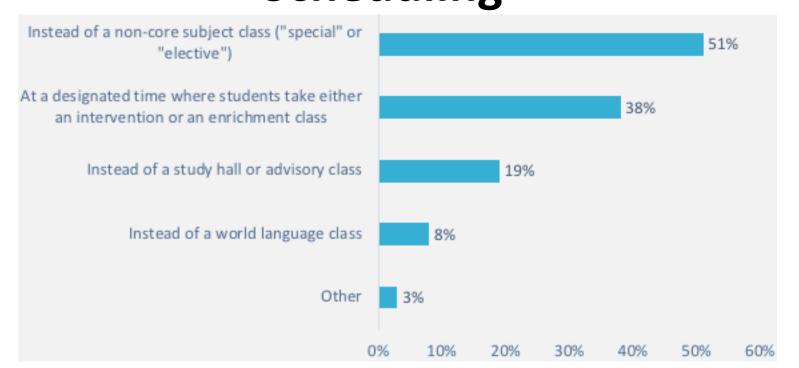
Strengthening Mathematics Intervention Classes (SMI)

Amy Brodesky, Emlly Fagan, Jackie Zweig, and Theresa MacVicar, EDC Dr. Karen Karp, Johns Hopkins University

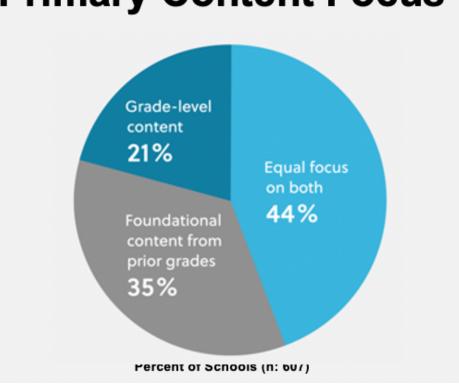
Mathematics Intervention (MI) Classes:


classes that schools offer *in addition* to core math classes to support students with math difficulties. MI classes are *not* homework help clubs, study halls, or separate special ed. classes

PHASE 1: LANDSCAPE STUDY


We conducted an observational study and a **national survey** of a random sample of **2,024 public schools** (urban and suburban) with grades 6-8, stratified by U.S. Census region and percent of students with free and reduced-price lunch (FRPL). 876 schools responded (43%). One respondent per school.

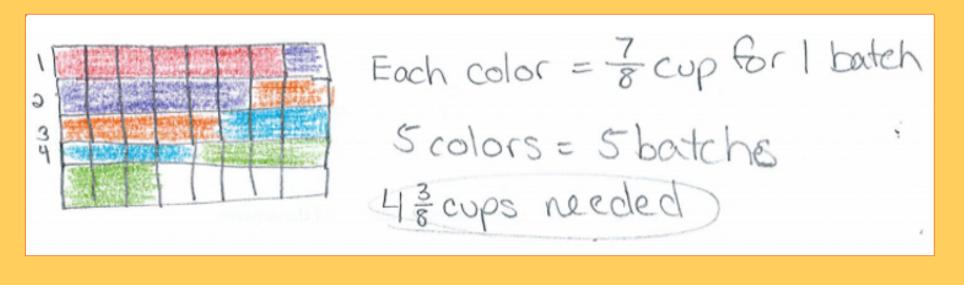
69% of schools had mathematics intervention classes for middle grades students (2016 – 2017)


Class Size 26% 25% 18% 18% 1-5 students 6-10 students 11-15 students 16-20 students More than 20

Scheduling

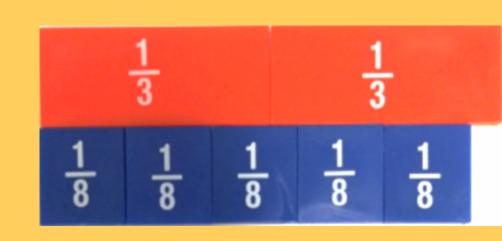
Primary Content Focus

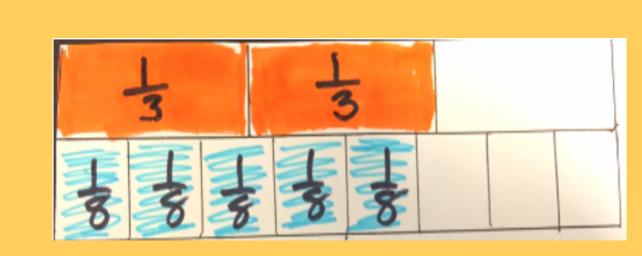
Common Challenges

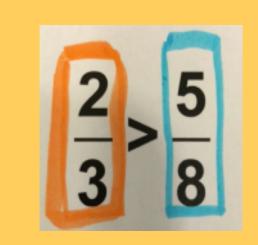

- Students in MI classes have a wide range of learning needs: 93% of schools
- Some students feel negatively about being in MI classes: 79% of schools
- Little or no professional development on intervention practices: 66% of schools

Need:

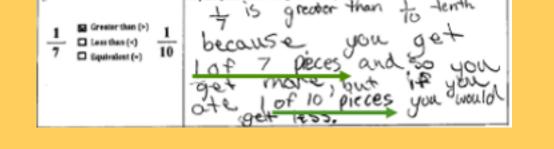
- Before this project, little was known about US schools' math intervention practices, structures, and challenges at the middle grades
- Teachers need PD that is focused on intervention classes, helping them to provide effective instruction and support for students with math difficulties

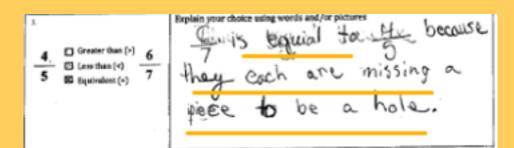

What do teachers do in the SMI PD Course?


- Challenge deficit models of students and build strengths-based approaches
- Deepen their own understanding by doing rich math tasks & sharing approaches



Learn to use recommended instructional practices such as, visual representations, number lines, and Concrete-Semi-Concrete-Abstract (CSA)




Build strategies to support student communication

Collect, examine, sort, annotate, and discuss student work from probes

❖ Use formative assessment (probes & interviews) to uncover student thinking

- Plan and teach lessons that are targeted to students' strengths and needs
- Reflect on and share experiences applying course ideas with students

"I thought the interviews were incredibly helpful and allowed me to understand my students' thinking much better than I had before. I was surprised by the amount of thinking/ knowledge my students shared and their excitement to do so."

"The interviews really helped me refocus on **slowing down** and really **taking the time to listen** to students as they share their thinking!"

"I am proud of what I created based on my particular student--really tailoring my lesson to her strengths and learning needs. It pushed me to critically analyze her work and her thinking and get a whole picture of her."

Goals:

- Study the national landscape of math intervention classes at grades 6-8
- Apply study findings to create a PD course specifically for math intervention teachers and test it

PHASE 2: PD COURSE

We created a hybrid PD course for MI teachers

- 5 full-day sessions; 5 online sessions (async); 4 1-hr virtual meetings (sync)
- 70 hours of PD sustained over one school year
- Fractions, Decimals, Integers, Expressions & Equations
- Instructional Practices
- Formative Assessment Approaches

PILOT STUDY

Research Question: After participating in the SMI course, to what extent do teachers show increases in their knowledge, practices and self-efficacy for teaching struggling learners in mathematics intervention classes?

Sample

- 28 intervention teachers (grades 5-8)
- 15 urban, suburban, and rural districts in MA & ME
- Participated in pilot of full course (70 hours /9 months)

MEASURES

- MKT instrument
- MTSES Self-efficacy instrument
- Preparedness for teaching students with math difficulties
- Mathematics Mindset Beliefs items
- Instructional Practices survey
- Classroom observations and interviews
- Course evaluation surveys

FINDINGS

- MKT: statistically significant increase for rational numbers
- Self-efficacy: statistically significant increase
- Preparedness for teaching students with math difficulties: statistically significant increase
- Instructional practices: increase in reported frequency of using six practices that were emphasized in the PD
- Mindset beliefs: no significant changes
- Evaluation: 89% rated course as *very useful;* 11% as *useful;* 100% would recommend the course to MI teachers (n:28)

LEARN MORE

Amy Brodesky (PI), <u>abrodesky@edc.org</u>) <u>www.edc.org/accessmath</u>

This project is funded by the National Science Foundation, grant #DRL-1621294. Any opinions, findings, and conclusions or recommendations expressed in these materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

