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Math Cognition as Math Discourse 
To mathematicians since Euclid, math represents the paradigm of creative 
intellectual activity. Its methods set the standard throughout Western civilization 
for rigorous thought, problem solving and argumentation. Many schools teach 
math in part to instill in students a sense of deductive reasoning. Yet, too many 
students—and even some math teachers—end up saying that they “hate math” and 
that “math is boring” or that they are “not good at math” (Boaler, 2008; Lockhart, 
2009). They have somehow missed the intellectual math experience—and this may 
limit their lifelong interest in science, engineering and technology. According to a 
recent “cognitive history” of the origin of deduction in Greek mathematics (Netz, 
1999), the primordial math experience in 5th and 4th Century BCE was based on the 
confluence of labeled geometric diagrams (shared visualizations) and a language of 
written mathematics (asynchronous collaborative discourse), which supported the 
rapid evolution of math cognition in a small community of math discourse around 
the Mediterranean, profoundly extending mathematics and Western thinking.  

The vision behind the research described in this paper is to foster communities 
of math discourse in networks of math teachers, in classrooms of K-12 math 
students and in online communities associated with the Math Forum. We want to 
leverage the potential of networked computers and dynamic math applications to 
catalyze groups of people exploring math and experiencing the intellectual 
excitement that Euclid’s colleagues felt—refining and testing emerging 21st 
Century media of collaborative math discourse and shared math visualization to 
support math discourse in both formal and informal settings and groupings.  

The learning sciences have transformed our vision of education in the future 
(Sawyer, 2006; Stahl, Koschmann & Suthers, 2006). New theories of mathematical 
cognition (Bransford, Brown & Cocking, 1999; Brown & Campione, 1994; Greeno 
& Goldman, 1998; Hall & Stevens, 1995; Lakatos, 1976; Lemke, 1993; 
Livingston, 1999) and math education (Boaler, 2008; Cobb, Yackel & McClain, 
2000; Lockhart, 2009; Moss & Beatty, 2006), in particular, stress collaborative 
knowledge building (Bereiter, 2002; Scardamalia & Bereiter, 1996; Schwarz, 
1997), problem-based learning (Barrows, 1994; Koschmann, Glenn & Conlee, 
1997), dialogicality (Wegerif, 2007), argumentation (Andriessen, Baker & Suthers, 
2003), accountable talk (Michaels, O’Connor & Resnick, 2008), group cognition 
(Stahl, 2006) and engagement in math discourse (Sfard, 2008; Stahl, 2008a). These 
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approaches place the focus on problem solving, problem posing, exploration of 
alternative strategies, inter-animation of perspectives, verbal articulation, 
argumentation, deductive reasoning and heuristics as features of significant math 
discourse (Maher, Powell & Uptegrove, 2010; Powell, Francisco & Maher, 2003; 
Powell & López, 1989).  

To learn math is to participate in a mathematical discourse community (Lave & 
Wenger, 1991; Sfard, 2008; Vygotsky, 1930/1978) that includes people literate in 
and conversant with topics in mathematics beyond basic arithmetic. Learning to 
“speak math” is best done by sharing and discussing rich math experiences within 
a supportive math discourse community (Papert, 1980; van Aalst, 2009). By 
articulating thinking and learning in text, students make their cognition public and 
visible. This calls for a reorientation of the teaching profession to facilitate 
dialogical student practices as well as requiring content and resources to guide and 
support the student discourses. Teachers and students must learn to adopt, 
appreciate and take advantage of the visible nature of collaborative learning. The 
emphasis on text-based collaborative learning can be well supported by computers 
with appropriate computer-supported collaborative learning (CSCL) software, such 
as that prototyped in the Virtual Math Teams (VMT) Project (Stahl, 2009). 

A Learning Environment for Math Discourse  
In order to support our vision of significant mathematical discourse, we have 
integrated an online environment for synchronous and asynchronous 
communication (VMT) with a system for exploring dynamic mathematics 
(GeoGebra). We have described this dual system elsewhere (Stahl, 2012; Stahl et 
al., 2010). We attempt to support the combination of collaborative math discourse 
and shared math visualization by allowing small groups of students to engage in 
text chat while they are exploring a dynamic math workspace together. We have 
created a multi-user version of GeoGebra and integrated it with chat (as well as 
wiki and shared whiteboard) communication with the VMT functionality. This is 
designed to pool the advantages of dynamic math visualization with collaborative 
learning and math discourse. 

Researching Discourse Practices 
Our research centers on measurements of group math discourse rather than on 
assessment of individual learning of math content—in accordance with the socio-
cultural view that effective individual math learning can be an indirect product of 
participation in group math discourse (Lave & Wenger, 1991; Sfard, 1998; 2008; 
Stahl, 2006; Vygotsky, 1930/1978). Vygotsky's notion of the zone of proximal 
development suggests that students may be able to engage in mathematical work 
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within groups at a level that they will not be able to engage in for a couple years as 
individuals—and that such group work can be essential for the individual 
development in the long run (Vygotsky, 1930/1978, pp. 84-91). As a result, there is 
a need to assess the educational effectiveness of group interactions as such, beyond 
pre/post tests of the individuals.  

In addition, the striking finding within CSCL research of productive failure 
(Barron, 2003; Kapur & Kinzer, 2009; Patak et al., 2011; Schwartz, 1995) shows 
that there can be a paradoxical inverse relationship between measures of successful 
learning by small groups versus by the individual members of those groups 
because of group processes that reveal deep mathematical relationships but that do 
not lead immediately to high test scores of the individuals. For these reasons, we 
evaluate engagement in mathematics in terms of the quantity and quality of the 
math discourse that takes place during the small-group problem-solving 
interactions, looking for increases for groups as they participate and in successive 
project years as our teaching model, collaboration technology and curricular 
resources are iteratively developed.  

The analysis of significant math discourse is a task and goal for students using 
the system, for their teachers assessing their learning as well as for researchers 
studying collaborative math education. Reflection on interaction logs by teachers 
and students primarily involves trying to follow the problem-solving path of 
participants and to notice critical collaboration moves. They will be encouraged to 
look for examples of accountability to the group, to standards of math reasoning 
and to the characteristics of their math objects. They will look for instances where 
someone poses a productive inquiry that initiates effective group exploration—or 
where the group fails to come up with a useful proposal or fails to take up a 
proffered proposal. Examples will be culled and shared on the community wiki. 

Formative evaluation is a constant process built into the design of our work. As 
a design-based research effort, our project involves designing and exploring an 
iteratively refined solution—and by documenting its impact on the quantity and 
quality of math discourse by teachers and students. The interlocking components 
of the project will be reviewed at weekly project team meetings. Team meetings 
include interaction analysis data sessions (Jordan & Henderson, 1995; Stahl, 2010), 
in which the group collaboratively discusses new data from logs of teachers or 
students—and makes design decisions for refining the co-evolving components of 
our research. The project team discusses what seems to be working and what does 
not. It decides what to modify for the next iteration. Our ultimate goal is to 
increase the quality and quantity of both teacher and student mathematical 
discourse. Therefore, teacher professional development is oriented to improving 
the math discourse of their students. 
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Other research has documented the efficacy of dynamic-math visualization 
tools for individual learning; for instance, a study of geometry students in eleven 
Florida schools revealed a significant difference in the FCAT mathematics scores 
of students who were taught geometry using Geometer’s Sketchpad compared to 
those who used the traditional method—regardless of differences based on SES or 
gender (Myers, 2009). Our project has a different focus. We have developed 
coding schemes and analysis approaches oriented to the group unit of analysis 
based on conversation analysis of adjacency pairs and longer sequences (Sacks, 
1962/1995; Schegloff, 2007; Stahl, 2009, Chs. 20, 22, 23, 26; 2011b; Stahl et al., 
2011). This approach serves both quantitative and qualitative analysis, by 
simultaneously specifying the structure of meaningful discourse moves and 
providing countable categories of group interaction units, in order to document 
changes over time—comparing discourse characteristics in selected time slices 
within teams or across cohorts.  

The project will automatically produce raw data in the form of log files of 
participant online interactions. The log files are anonymous, but allow tracking of 
individual users through consistent login handles. The VMT environment is 
instrumented to capture all user actions in the chat and whiteboard—this has been 
extended to multi-user GeoGebra. A database of all sessions is automatically 
maintained and provides spreadsheet logs in handy formats and Replayer files. 
Software tools will be used for automated and manual log analysis of discourse 
measures and their evolution during training. While low-level group processes 
(e.g., number, length and rate of chat postings and drawing actions in different time 
slices) can be tracked automatically and analyzed statistically, higher-level math-
discourse processes have to be interpreted manually. Raw and coded logs are 
maintained in a database to facilitate analysis of changes over time for groups 
across sessions and across successive cohorts of participants. 

Quantitative analysis—based largely on the coding of discourse moves in 
teacher and student VMT logs—will track changes in key measures of significant 
math discourse. Discourse will be coded and measured along the following 
dimensions: (1) volume of discourse and level of participation, (2) percentage of 
on-task math discourse, (3) use of representations, (4) integration of chat and 
drawing, (5) use of accountable talk moves, (6) adoption of socio-mathematical 
norms and practices, (7) speaking meaningfully with explanation and 
argumentation, (8) involvement in posing, exploring and solving problems and (9) 
additional dimensions to be developed based on project experience.  

The theory of math learning through participation in math discourse (Sfard, 
2008; Stahl, 2008b) specifies important mathematical discourse moves, such as 
encapsulation, reification, saming, routines, deeds, explorations and rituals. The 
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theory of accountable talk (Michaels, O’Connor & Resnick, 2008; Resnick, 1988) 
specifies discourse moves that promote accountability to the group, to standards of 
math reasoning and to the characteristics of the math objects. Speaking 
meaningfully in math discourse “implies that responses are conceptually based, 
conclusions are supported by a mathematical argument and explanations include 
reference to the quantities in the problem context [as opposed to a focus on merely] 
describing the procedures and calculations used to determine the answer” (Clark, 
Moore & Carlson, 2008, p.298).  

Socio-mathematical norms include what counts as an acceptable, a justifiable, 
an easy, a clear, a different, an efficient, an elegant and a sophisticated explanation 
(Yackel, 1995; Yackel & Cobb, 1996). Mathematical practices emerge from 
interaction, are taken up by participants and are applied repeatedly (Medina, 
Suthers & Vatrapu, 2009; Stahl, 2011a). These dimensions of significant math 
discourse are associated with typical sentences and discourse moves that can be 
identified by coders. A coding scheme will be validated with acceptable inter-rater 
reliability, as in (Stahl, 2009, Chs. 22, 23; 2011b).  

Detailed interaction analysis of selected cases will show how the math 
discourse actually evolves. Quantitative analysis can establish the statistical 
significance of changes in learning outcomes, but it generally does not provide 
much insight into the mechanisms of change; these mechanisms will become 
visible in detailed case studies in which the specifics of the interactions can be 
studied. By combining quantitative and qualitative analysis of discourse 
transformations, the project evaluation will determine how the online interaction 
involves engagement in significant mathematical discourse.  
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