Learning Progressions: It's All About Fused Knowledge (Content + Practices + Crosscutting Concepts)

Nancy Butler Songer Professor of Science Education and Learning Technologies Director, *Center for Essential Science* The University of Michigan

National Science Foundation DRK-12 PI Meeting 6.15.12

NGSS and Fused Knowledge

"The standards are written as student performance expectations...These statements each incorporate a practice, a disciplinary core idea, and a crosscutting concept. The performance expectations are the assessable components of the NGSS architecture." (Achieve draft, May 2012)

How Do We Use Learning Progressions?

- 1. Framing scientific knowledge and goals
 - e.g., Identify what knowledge is important

Upper Anchor

2008: Three Year Content Learning Progression in Ecology and Biodiversity

Focal Knowledge We Care About = Knowledge That Fuses Content + Practices

- **Content**: Because many animals rely on each other, a change in the number of one species can affect different members of the web.
- Science Practice *Explanations*: Students build a complete scientific explanation consisting of a claim, two pieces of evidence and reasoning
- **Fused C+P CC**: Students <u>construct scientific explanations</u> to address the question, How have recent changes in the Detroit River affected yellow perch populations?

Learning Progression, Climate Change Impacts

Content Highlighted

SSa. Create representations to document how human activity in your community has positive or negative affects on climate change. Super

Synthesis

Cluster 5:

Species

Predicted

Futures

Cluster 4: Predictions

Cluster 3:

Natural Processes

Cluster 2:

Abiotic

Factors

Cluster 1:

Biotic Interactions

5c. <u>Construct a representation of an explanation</u> to address the scientific question: What does Future 1 look like for my species?

5b. <u>Construct a justified prediction</u> using data to address the scientific question, does Future 1 predict affects on predator-prey interactions for my focal species?

5a. Use a representation of a prediction to <u>analyze</u> the future impact of climate change on the Pike and on a focal species' distribution.

4d. <u>Construct an explanation</u> (using climate data) to address the scientific question, is there scientific evidence to show that human activities have an effect on climate?

4c. Use a video representation as evidence to justify their answer to the question, does human activity have an effect on the climate?

4b. <u>Construct several justified predictions</u> of how human activities influence the rate of future carbon dioxide production and temperature increases using knowledge of the carbon cycle and human activities.

 <u>Use a representation</u> (Carbon Card Game) to tell a story about human activities and their associated carbon production.

3c. <u>Construct an explanation</u> to address the scientific question, is there a relationship between carbon dioxide and changing climate?

3b. Create a representation to describe the greenhouse effect.

3a. <u>Create a representation</u> (Carbon Cycle) of the movement of Greenhouse gases through the environmental system.

2d. <u>Construct an explanation</u> to address the scientific question, is there a difference between weather and climate?

2c. <u>Analyze data</u> to identify patterns of average temperature rates over the last 100 years?

2b. <u>Apply mathematical routines</u> (averages) to historic and current temperatures and <u>create representations</u> to compare historic and current average temperatures (climate).

2a. <u>Analyze data</u> of species distribution and abiotic conditions (temperature and precipitation), to identify patterns in abiotic conditions that influence where a focal species lives.

1e. <u>Construct an explanation</u> to address the scientific question, why doesn't my focal species distribution completely overlap with the distribution of its prey?

1d. <u>Analyze data</u> in the form of two species distributions to compare the locations of predator-prey habitats.

1c. Use representations in the form of a food web to address the question, what does my species eat and what eats my species?

1b. Analyze data to show where a focal species lives.

1a. Collect data to show how things in the school yard serve as a species' habitat.

Abiotic Biotic Fusion: Abiotic + Biotic

5c. <u>Construct a representation of an explanation</u> to address the scientific question: What does Future 1 look like for my species?

5b. <u>Construct a justified prediction</u> using data to address the scientific question, does Future 1 predict affects on predator-prey interactions for my focal species?

5a. Use a representation of a prediction to <u>analyze</u> the future impact of climate change on the Pike and on a focal species' distribution.

4d. <u>Construct an explanation</u> (using climate data) to address the scientific question, is there scientific evidence to show that human activities have an effect on climate?

4c. Use a video representation as evidence to justify their answer to the question, does human activity have an effect on the climate?

4b. <u>Construct several justified predictions</u> of how human activities influence the rate of future carbon dioxide production and temperature increases using knowledge of the carbon cycle and human activities.

4a. <u>Use a representation</u> (Carbon Card Game) to tell a story about human activities and their associated carbon production.

3c. <u>Construct an explanation</u> to address the scientific question, is there a relationship between carbon dioxide and changing climate?

3b. Create a representation to describe the greenhouse effect.

3a. <u>Create a representation</u> (Carbon Cycle) of the movement of Greenhouse gases through the environmental system.

2d. <u>Construct an explanation</u> to address the scientific question, is there a difference between weather and climate?

2c. <u>Analyze data</u> to identify patterns of average temperature rates over the last 100 years?

2b. <u>Apply mathematical routines</u> (averages) to historic and current temperatures and <u>create representations</u> to compare historic and current average temperatures (climate).

2a. <u>Analyze data</u> of species distribution and abiotic conditions (temperature and precipitation), to identify patterns in abiotic conditions that influence where a focal species lives.

1e. <u>Construct an explanation</u> to address the scientific question, why doesn't my focal species distribution completely overlap with the distribution of its prey?

1d. <u>Analyze data</u> in the form of two species distributions to compare the locations of predator-prey habitats.

1c. <u>Use representations</u> in the form of a food web to address the question, what does my species eat and what eats my species?

1b. Analyze data to show where a focal species lives.

Scientific

Explanations

1a. Collect data to show how things in the school yard serve as a species' habitat.

Data Analysis

Data Collection

Practices Highlighted

Learning Goals Highlighted by Content

3c. <u>Construct an explanation</u> to address the scientific question, is there a relationship between carbon dioxide and changing climate?

3b. Create a representation to describe the greenhouse effect.

3a. <u>Create a representation</u> (Carbon Cycle) of the movement of Greenhouse gases through the environmental system.

Abiotic	Biotic	Fusion: Abiotic + Biotic
Abiotic	Biolic	Abiotic + Biotic

Learning Goals Highlighted by Science Practices

3c. <u>Construct an explanation</u> to address the scientific question, is there a relationship between carbon dioxide and changing climate?

3b. Create a representation to describe the greenhouse effect.

3a. <u>Create a representation</u> (Carbon Cycle) of the movement of Greenhouse gases through the environmental system.

How Do We Use Learning Progressions?

- 2. Formative and summative assessment
 - e.g., Identify what knowledge to assess

Assessment Emphasizing Fused Knowledge

- Beth wrote this explanation below to answer the scientific question, **Is there** evidence that climate change will affect where plants and animals can live in the future?
- A. Is there anything you would change about Beth's explanation? "Yes."
- B. If you would change something, what would you write instead?
- " Instead of talking about what she saw on the maps I would use real life evidence. Like the example about polar bears and ice caps."
- "Her reasoning and evidence isn't legit. It only states the warmth which isn't enough to say climate change will affect where plants and animals can live."

How Do We Use Learning Progressions?

- 3. Scaffolding students' practices fused to core science content
 - e.g., Provide guidance on how to guide learning through "the messy middle" towards upper anchor

LP Section: Impact of Climate Change on Species

5c. <u>Construct a representation of an explanation</u> to address the scientific question, "what does Future 1 look like for my species?"

5b. <u>Construct a justified prediction</u> using data to address the scientific question, "does Future 1 predict effects on predator-prey interactions for my focal species?"

5a. Use a representation of a prediction to <u>analyze</u> the future impact of climate change on the northern pike (the fish species) and on a focal species' distribution.

Future Scenarios from (IPCC) = COMPLEX

Future **climate change** depends on future greenhouse gas emissions Future **greenhouse gas emissions** depend on socio-economic choices

Prediction-Making using Models of Simplified Climate Change Scenarios for Middle/High Schoolers

Future **climate change** depends on future greenhouse gas emissions Future **greenhouse gas emissions** depend on socio-economic choices

Simplified Modeled Predictions Is there evidence that climate change will impact the distribution of my species, Red Squirrel?

Focal Species Current and Future Distributions

Red Squirrel: Future 1

Focal Species Current and Future Distributions

Red Squirrel: Future 2

Focal Species Current and Future Distributions

Red Squirrel: Future 3

Focal Species Current and Future Distributions

Guided Reflection in Constructing Explanations to address question, Is there evidence that climate change will impact the distribution of my focal species?

Conclusions

- Largest gap in current research on learning progressions is in the area of assessment design and assessment evaluation
- Second priority: Discussions about use of LPs and representing the knowledge we (and NGSS) care about :
- Fused content+practices+crosscutting concepts