Developing Science Problem-Solving Skills and Engagement Through Intelligent Game-Based Learning Environments

Jonathan P. Rowe

James C. LesterJohn L. NietfeldJames MinogueHiller A. Spires

North Carolina State University

Intelligent Game-Based Learning Environments

Adaptive Story-Centric Games

- Game-based learning environments in which learners:
 - Participate in "story-centric" problemsolving activities
 - Immerse themselves in tailored narratives
- Revolve around:
 - Believable characters
 - Expansive virtual worlds
 - Rich stories

Intelligent Tutoring in Game-Based Learning Environments

- Affect-rich characters
- Problem-solving guidance
- Context-sensitive feedback
- Dynamic problem selection
- Tailored explanations

How can intelligent game-based environments promote problem solving and engagement in STEM learning for upper elementary students?

CRYSTAL ISLAND – Upper Elementary Science

Subject

- 5th grade science
- Standards aligned

Content

- Landforms
- Maps, models & navigation

Story

- Adventurous adolescent
- Shipwrecked crew
- Complete quests to explore island

Click for Crystal Island Year 2 Walkthrough Video

Virtual Tablet

IslandPedia App

Problem-Solving Guidance

Markov Logic Network Goal Recognition Framework

"t,a,s,g:action(t,a) Ù state(t,s) \triangleright goal(t,g) 1.5

$$(t,a_1,a_2,g:action(t,a_1))$$
 $(action(t-1,a_2)) > goal(t,g)$ 2.3

- Machine learning techniques for detecting students' problem-solving goals
- Goal recognition models introduce opportunities for tailoring problem-solving guidance
- 82% improvement over baseline approaches

E. Ha, J. Rowe, B. Mott, & J. Lester, Goal Recognition with Markov Logic Networks for Player-Adaptive Games, Proceedings of the 7th Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 32-39, 2011.

. . .

J. Sabourin, B. Mott, & J. Lester, Modeling Learner Affect with Theoretically Grounded Dynamic Bayesian Networks, Proceedings of the 4th Intl. Conference on Affective Computing and Intelligent Interaction, pp. 286-295, 2011.

Game-Based Learning Studies

Classroom Studies

Scaffolding Study

- Onsite at 4 schools
- 379 fifth grade students
- 52% Caucasian, 25% African American, 11% Latino, 12% Other
- 2x2 factorial experiment comparing alternate in-game scaffolding methods

Curriculum Integration Study

- Onsite at 8 schools
- 831 fifth grade students
- 62% Caucasian, 14% African American, 8% Asian, 16% Other
- Teacher-driven implementation in classrooms

Findings

Significant learning gains

Scaffolding

- Pre-test (M=12.3, SD=3.8)
- Post-test (M=13.0, SD=4.0)
- t(330)=5.70, p<.01

Curriculum Integration

- Pre-test (M=11.8, SD=4.1)
- Post-test (*M*=13.6, *SD*=3.7)
- *t*(716)=17.70, *p*<.01
- Significant gains replicated across multiple classroom studies.
- Greater learning gains observed in teacher-driven implementations.

Content Learning Gains by Study

- Significant gains on problem-solving model application task, t(713)=3.72, p<.01
- Significant gains in science self-efficacy, t(713)=7.06, p<.01
- Significant gains in landforms self-efficacy, t(713)=6.77,
 p<.01
- Significant correlation between mastery approach goal orientation and curriculum post-test, r=.31, p<.05

CRYSTAL ISLAND Elementary School Landforms

CRYSTAL ISLAND Middle School Microbiology

CRYSTAL ISLAND Middle School Science & Literacy

CRYSTAL ISLAND Middle School Computational Thinking

Future Directions

- Adaptive quest generation and sequencing
- Embedded assessment capabilities
- Dynamic explanation generation and feedback
- Enhanced collaboration functionalities
- Emotionally adaptive virtual characters
- Extended classroom deployments

Conclusions

- Game-based learning environments can produce significant STEM learning gains.
- Game-based learning environments can be effectively deployed in classrooms with standards-aligned curricula.
- Game-based learning environments hold considerable promise for promoting significant content learning gains, problem solving and sustained engagement.

Acknowledgements

Research Scientist Brad Mott (Computer Science)

Postdoc

Eunyoung Ha (Computer Science)

Graduate Students (Computer Science)

Alok Baikadi Julius Goth Joe Grafsgaard Seung Lee Sam Leeman-Munk Wookhee Min Chris Mitchell Jennifer Sabourin Andy Smith

Staff

Kirby Culbertson Sarah Hegler Eleni Lobene Adam Osgood Rob Taylor

Affiliated Faculty

Kristy Boyer (Computer Science) Michael Carter (English) Patrick FitzGerald (Art & Design) Marc Russo (Art & Design) Eric Wiebe (Mathematics, Science, & Technology Ed)

Affiliated Post-Docs and Graduate Students (Art, Education, Psychology)

Megan Hardy (Human Factors) Kristin Hoffman (Educational Psychology) Angela Meluso (Curriculum & Instruction) Lucy Shores (Educational Psychology) Sinky Zheng (Curriculum & Instruction)

This work was supported by the National Science Foundation under grants REC-0632450, IIS-0757535, DRL-0822200, IIS-0812291, DRL-1007962, DRL-1020229, The Bill & Melinda Gates Foundation, The William and Flora Hewlett Foundation, and EDUCAUSE.

Findings

Significant Bivariate Correlations with Curriculum Post-test by Study

	Scaffolding Study	Curriculum Integration Study
Self-Efficacy	Science self-efficacy (r = .37)	Landform self-efficacy (r = .33) Models self-efficacy (r = .28)
Goal Orientation	Mastery approach (r = .29)	Mastery approach (r = .31)
Performance Attribution	Effort (r = .13)	Effort (r = .23)
Quests Completed	Total quests completed (r = .44)	

* All findings significant at p < .05