Calipers II: Using Science Simulations to Assess Complex Science Learning

Edys Quellmalz, Barbara Buckley, Mark Loveland (WestEd) and Michael Timms (ACER)

Presented at the DRK12 Principal Investigator Meeting, Arlington, VA, June 14, 2012

Funding provided by the National Science Foundation-Grant 0733345 and the US Department of Education-OESE Grant 09-2713-126

COPYRIGHT WESTED, 2011

Calipers II Goals

- 1. Develop simulation-based assessment modules to *supplement* and *extend* the science knowledge and skills typically addressed in static print materials
- 2. Foster deep learning about science systems and use of inquiry practices
- Document the effectiveness, technical quality, feasibility, and utility of simulation-based science environments for promoting and assessing science standards

Our Theoretical Foundation

Integrates research on

• *Model-based learning* (Gobert & Buckley, 2000)

System Framework-components, interactions, and emergent system behavior

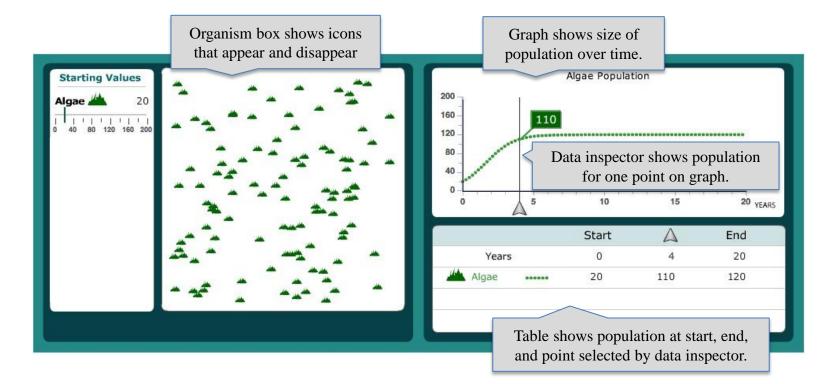
The formation, use, evaluation and revision of mental models

- Evidence-centered assessment design (Mislevy et al, 2003)
 A systematic assessment development process that links targets, tasks & data
- Cognitive science

Guides design and use of representations & interactions in tasks

Principled Assessment Design Approach (Mislevy et al., 2003)

What complex of knowledge, skills, or other attributes should be assessed? What behaviors or performances should reveal the relevant knowledge and skills described in the student model? What tasks or situations should elicit the behaviors or performances described in the evidence model?



Calipers II Design Principles

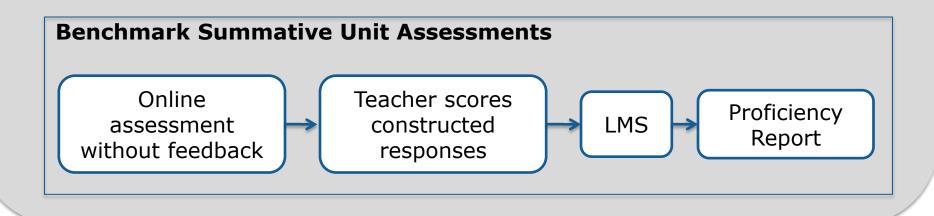
- Framework of models of science systems and integrated science practices
- Authentic, problem-based inquiry
- Scaffolding
- Formative assessment
- Collaborative science practices
- Discourse for sense-making and scientific arguments

Multiple Modes of Representation Active Inquiry

Calipers II Assessment Suites

- 1. A simulation environment representing ageappropriate models of a science system
- 2. Problem-driven curriculum inquiry activities
- 3. Embedded formative assessments with an intelligent scoring system that will provide immediate feedback
- 4. A coaching system tailored to individual responses and providing multiple re-teaching scaffolds

SimScientists Suites


- 5. Offline self-assessment and reflection activities to build scientific discourse and collaboration skills
- 6. End-of-unit benchmark assessments of progress
- 7. Standards-based professional development

Components of the SimScientists Classroom Assessments

Embedded in Classroom Instruction

What's in a Model of a Science System?

Components that have structures and rules of behavior

Interactions among components and their environment, as permitted by their structures and behaviors.

Complex behaviors or properties of the system that emerge from these interactions.

Ecosystem Target Model

System Model	Model Level	Content Targets	Inquiry
Levels	Descriptions	by Model Level	Targets
Components	What are the components of the system and their rules of behavior?	Every ecosystem has a similar pattern of organization with respect to the roles (producers, consumers, and decomposers) that organisms play in the movement of energy and matter through the system.	Use principles to identify role of organisms.
Interactions	How do the the individual components interact?	Matter and energy flow through the ecosystem as individual organisms participate in feeding relationships within an ecosystem.	Observe interactions among organisms.
Emergent Behaviors	What is the overall behavior or	Interactions among organisms and among	predict
	property of the system that	organisms and the ecosystem's nonliving	observe
	results from many interactions	features cause the populations of the	explain
	following specific rules?	different organisms to change over time.	investigate

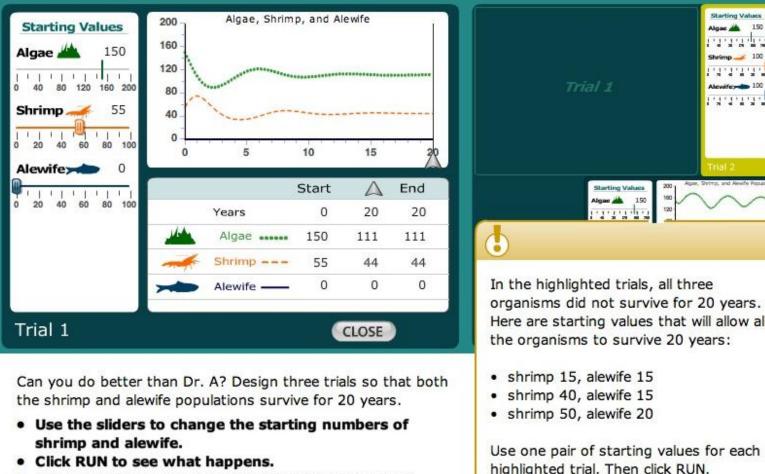
Atoms & Molecules Target System Model

Component	Atoms and Molecules	Skill
• •	Nitrogen 💽 Water Sapor Argon	Observe
Interaction	Speed – Spacing – Collisions	Skill
	Water Water Termination Terminatio Terminatio Termination Termination Termination Terminat	Analyze
Emergent	Boiling & Melting Point – States of Matter	Skill
	Nano Viewer Boiling Boiling Point Melting Point Time <u>Baet A End</u> Temp. (*C) - 40.0 - 62.0 20.0	Measure & Investigate

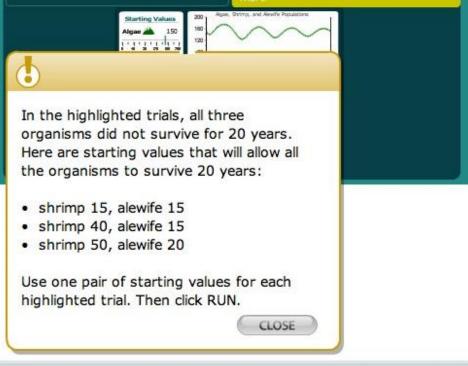
Examples System Models for Other Science Domains

Model Levels	Force & Motion	Atoms & Molecules	Climate
Components	Objects have mass. A force is a push or pull on an object. Forces have direction and magnitude. Friction is a force that acts opposite the direction of motion.	All matter is made of particles that are in constant motion. Particles have size, shape, and structures that influence their interactions.	Earth's orbit and axial tilt strongly influence the amounts of solar energy received by different locations.
Interactions	Forces are pushes and pulls that can affect the motion of an object. The change in motion is dependent on the strength of the forces, the direction of the forces and the mass of the object.	When particles collide, larger structures may be created. The size, shape and energy of the particles determine how the particles pack together.	This produces differential heating that results in convection currents in the atmosphere and the ocean that move energy and water around the planet.
Emergent Behaviors	An object's motion can be described by its position, direction of motion and speed. This motion may be represented graphically.	Matter has properties that emerge from the nature, arrangement and motion of its constituent particles.	Climates in a region are strongly influenced by latitude, patterns of air and water circulation, altitude, and proximity to large bodies of water.

Demo: Embedded Assessment



COPYRIGHT WESTED, 2011


Formative Assessment Features

- Immediate, individualized feedback and coaching
- Progress reports for students and teachers
- Reflection activities that address students' needs, promote transfer, and scientific discourse
- Timely information that teachers can use to tailor and adjust instruction

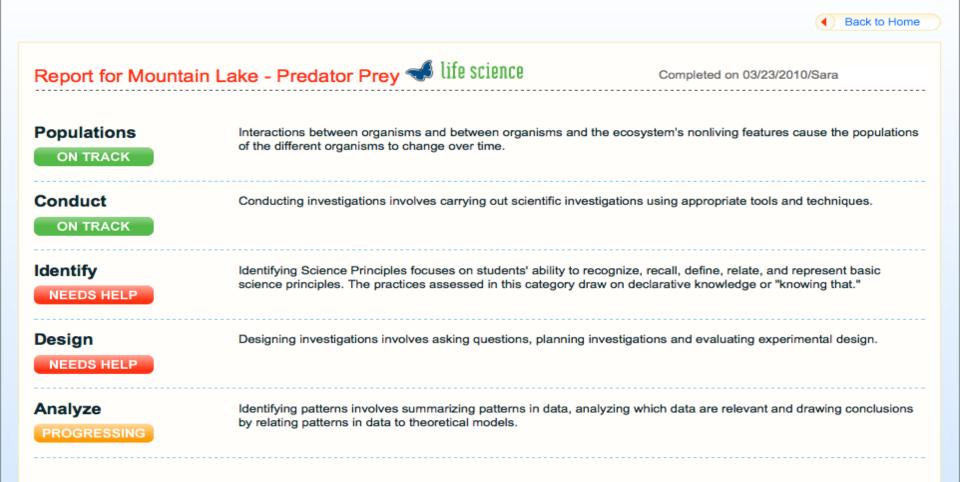
 When you have saved 3 trials in which shrimp and alewife survive for 20 years, click NEXT.

VIEWQ

Vanna

Altion among

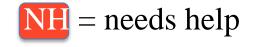
A End

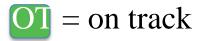

1 11 1 1

15 of 20

NEXT

Progress Reports to Students (Formative)




Progress Reports to Teachers (Formative)

Summary Report: Mountain Lake - Food Web Try it | Detailed Report

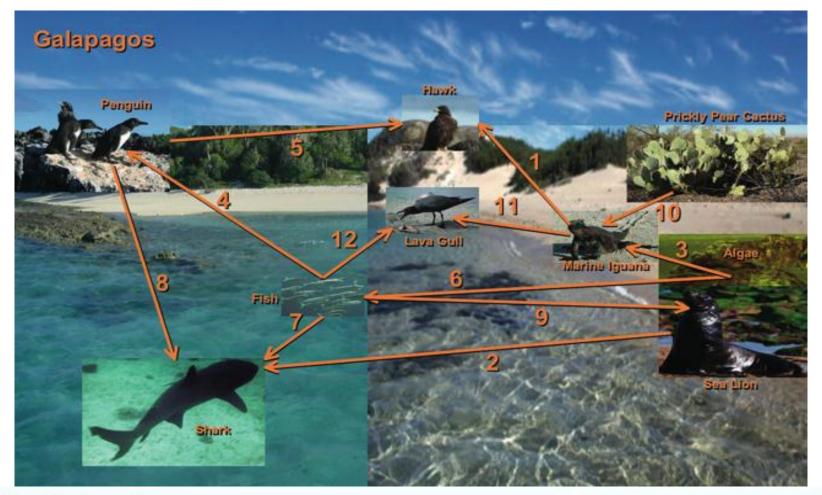
ASSESSMENT Mountain Lake - Food Web	¢	CLASS Period 7	Go!			
Content				NH Needs Help	P Making Progress	on Track
Roles	NH	OT		12 (46%)	4 (15%)	10 (38%)
Interactions	NH	ОТ		15 (58%)	4 (15%)	7 (27%)
Inquiry						
Identifying	NH	ОТ		15 (58%)	5 (19%)	6 (23%)
▶ Using	NH	ОТ		10 (38%)	5 (19%)	11 (42%)

P = making progress

Grouping Recommendations for Classroom Reflection Activity (Formative)

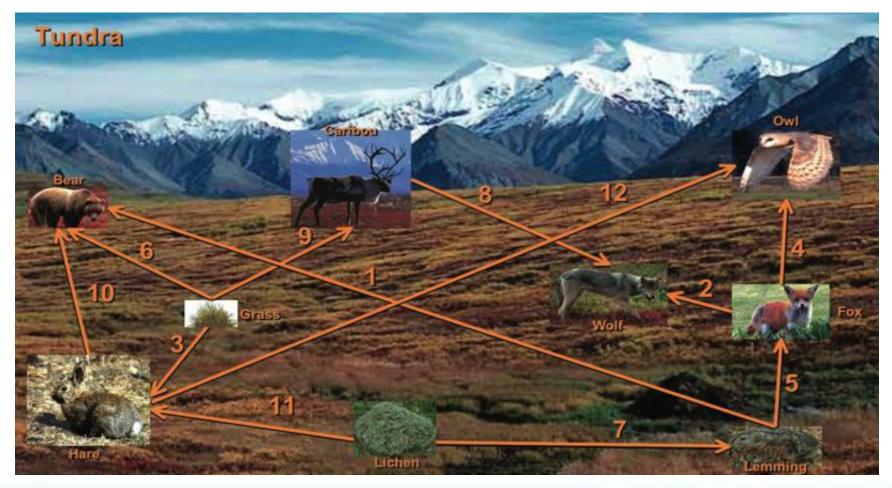
ASSESSMENT	CLASS	
Mountain Lake - Food Web	Period 7 Go!	时 Needs Help 😐 Making Progress 可 On Track
Gro	oup A students needed little help on either roles or interact oup B students needed help with interactions, but not with oup C students needed help with understanding the roles	h roles.

Student -	Refl Gr. 🔻	Roles 🔻	Interactions 🔻	Identifying 🔻	Using 🔻
Student 1	с	P	NH	NH	от
Student 1	С	NH	NH	NH	NH
Student 3	A	от	от	от	от
Student 4	A	от	от	от	от
Student 5	с	NH	NH	NH	NH
Student 6	С	NH	NH	NH	P
Student 7	с	P	NH	NH	P
Student 8	С	NH	NH	NH	NH
Student 9	с	NH	от	NH	P
Student 10	В	от	NH	от	P

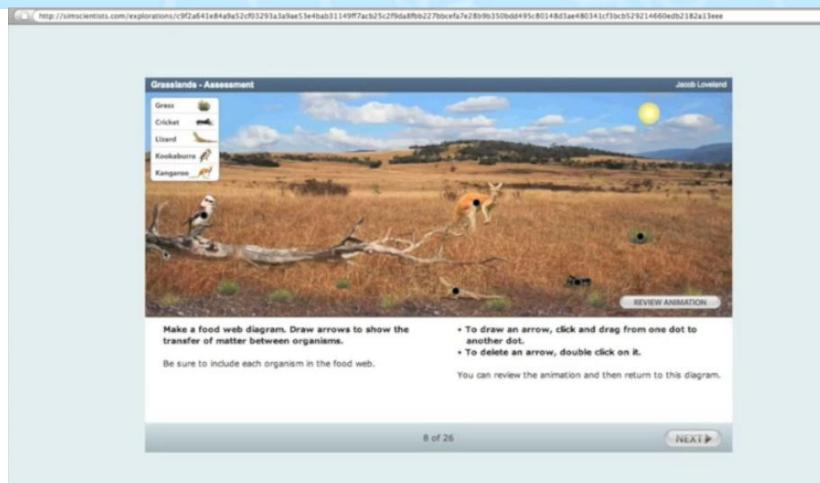


Classroom Reflection Activity (Adjusting Instruction)

- Formative use of assessment results
 - Students assigned to teams based on embedded results
- Transfer to different, more complex system
- Jigsaw structure
 - Allows differentiated instruction via tasks of varying difficulty
 - Promotes small and large group discourse and collaboration
- Guidance for teacher
 - Teacher review of key points in simulation
 - What to look for during group work and questions to pose in response
 - Posters and presentations
 - Evaluation of posters and presentations by students and teachers



Transfer to New, More Complex Ecosystem



Calipers II Reflection Activities: Ecosystems

Ecosystem Benchmark Assessment: (Summative) Assess Transfer to New Ecosystem

\$

Summary Benchmark Report (Summative)

Content					BB Be	low Basic	🕒 Bas	ic 🖻	Proficient	Advanced
Roles	BB				3 (100	%)	0 (0%)	0 (0	9%)	0 (0%)
▼ Interactions	BB	_			3 (100	%)	0 (0%)	0 (0	9%)	0 (0%)
interact with relationships	each other among org	through the ecos : Food web diagr ganisms in an eco nonliving source	ams indicate the osystem. All ecos	feeding systems have	e					
Populations	Α				0 (0%)	0 (0%)	0 (0	9%)	3 (100%)
Inquiry										
Identify	BB	A			1 (33%	6)	0 (0%)	0 (0	9%)	2 (67%)
▶ Use	BB	В			1 (33%	6)	2 (67%)	0 (0	9%)	0 (0%)
Desian	BB	В			1 (33%	6)	2 (67%)	0 (0)%)	0 (0%)
Detailed F	Report	t by Stud	ent and	Target	0 (0%)	3 (100%	a	9%)	0(0%)
ident 🕶	Roles 🔻	Interactions 🔻	Populations 🔻	Identify 🔻	Use 🔻	Design 🔻	Conduct -	Analyze 🔻	Evaluate	 Communication
nmons85, Sara85	BB	BB	A	BB	BB	BB	В	BB	BB	A
nmons86, Sara86	BB	BB	A	A	в	в	в	BB	BB	A
nmons87, Sara87	BB	BB	A	A	в	в	в	BB	BB	В

Calipers II Data and Findings

- AAAS review of alignment of content and inquiry targets with national and state standards
- Cognitive labs
- Classroom feasibility testing
- Pilot testing
- Field testing
 - 4 states, 28 districts, 58 teachers, 6,000 students
- Findings
 - Technical quality
 - Implementation evaluation
 - Effects of embedded on summative simulation benchmark and conventional posttest

EAG State Design Panel Partners

Pilot states

- Nevada (lead state)
- North Carolina
- Utah
- Advisory states
- Massachusetts
- Connecticut
- Vermont

CRESST Evaluation Conclusions

- Teachers were able to implement as intended.
- Observations found that students were actively engaged.
- Teachers and students generally believed that the SimScientists program was beneficial to learning.
- Teachers found the automatically scored, immediate feedback—especially the reports generated by the questions—helpful to students. The instant reports allowed teachers to easily see which questions students had the most difficulty with so that they could tailor their lessons accordingly.
 SimScientists

CRESST Evaluation Conclusions

- Teachers collectively agreed that the simulation-based assessments had greater benefits than traditional paper-and-pencil tests because of the instant feedback, interaction, and visuals.
- Teachers agreed that the assessments would be useful in measuring their individual state standards.

Analyses of Performance

- Compare performance on simulation-based assessments to traditional assessments
- Compare performance for all students, for English Learners, and for students with disabilities

Correlations Between Posttest and Benchmark Ability Estimates

Topic	Content	Inquiry
Ecosystems	0.64	0.57
Force and Motion	0.61	0.60

COPYRIGHT WESTED, 2011

Correlations Between Content and Inquiry Ability Estimates for Each Assessment

Topic	Posttest	Benchmark
Ecosystems	0.85	0.70
Force and Motion	0.92	0.80

COPYRIGHT WESTED, 2011

Gaps in Total Performance Between English Learners and the General Population

Topic	Posttest	Benchmark
Ecosystems	24.0%	10.6%
	(n=123)	(n=126)
Force and Motion	27.4%	13.6%
	(n=50)	(n=50)

Gaps in Inquiry Skills Performance Between English Learners and the General Population

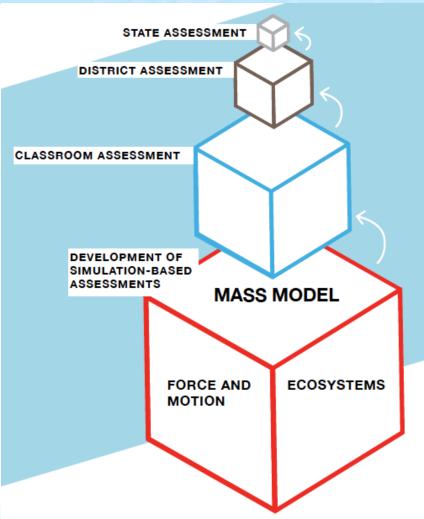
Topic	Posttest	Benchmark
Ecosystems	25.6%	6.6%
	(n=123)	(n=126)
Force and Motion	35.1%	10.9%
	(n=50)	(n=50)

Gaps in Total Performance Between students with Disabilities and the General Population

Topic	Posttest	Benchmark
Ecosystems	25.5%	5.6%
	(n=183)	(n=189)
Force and Motion	20.3%	6.2%
	(n=153)	(n=153)

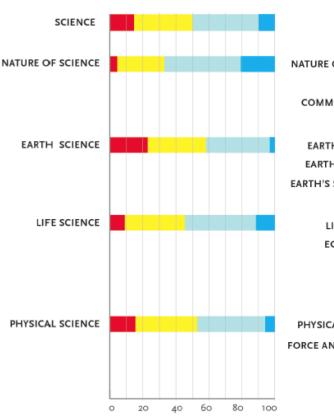
Gaps in Inquiry Skills Performance Between Students with Disabilities and the General Population

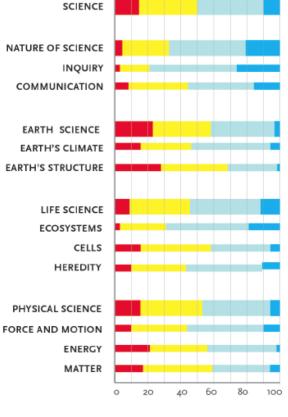
Topic	Posttest	Benchmark
Ecosystems	20.2%	8.4%
	(n=183)	(n=189)
Force and Motion	15.7%	7.0%
	(n=153)	(n=153)


Calipers II Field Testing (in progress)

- To examine effects of the curriculum-embedded assessments on learning
- Randomized control and treatment groups
 - With and without curriculum-embedded assessments
 - Partial results-Ecosystems
 - 763 students, 5 teachers (full sample 21 T, ~2400 students)
 - Effect size on pre-post conventional AAAS items 0.19
 - Effect size simulation based benchmark 0.43
 - Full field test in progress for Ecosystems and Atoms and Molecules

Balanced, Multilevel Assessment System Models


- Reporting benchmark results alongside district and state data
- Matrix sampling of short "signature" tasks from different topics



Side-by-Side Model

DISTRICT ASSESSMENT

CLASSROOM ASSESSMENT

BELOW BASIC BASIC PROFICIENT ADVANCED

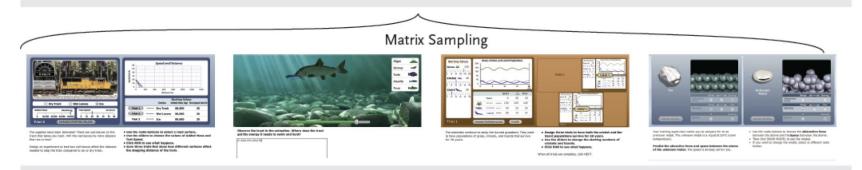
0

20

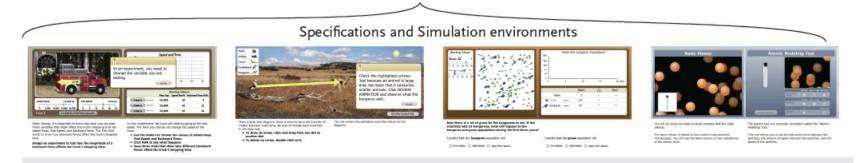
40

60

80


100

SCIENCE


STATE ASSESSMENT

Signature Task Model

State Test Forms

Simulation-based task item bank

Simulation-Based Classroom Assessments

Current Findings

The Calipers II simulation-based assessments

- Measure constructs not tested well by static modalities
- Can provide separate measures of inquiry and content
- The curriculum-embedded assessments seem to have positive effects on student learning
- The summative benchmark assessments have sufficient technical quality to be components of a state science assessment reporting system

Challenges

- Scheduling computer access
- Convincing psychometricans
- Progress from prototypes to developing grade-band suites
- Replications of documentation of technical quality
- Delivery across multiple technical infrastructures
- Models for scaling
- Models for sustainability

Next Steps

- Study vertically aligned simulation based assessment suites of
 - Classroom assessments
 - curriculum embedded assessments (for formative purposes)
 - benchmark assessments (for summative purposes)
 - Accountability assessments
 - signature tasks (for summative purposes)

Potential Collaborations

- Use of developed Calipers assessments as one of your external outcome measures
- Development of assessments embedded within your programs
- Co-development of new simulation-based learning and assessments

Contact Information

Website:

www.simscientists.org

Email:

equellm@wested.org

COPYRIGHT WESTED, 2011