

Agent based modeling in StarLogo Nova

Irene Lee Nord Anglia Workshop July 5, 2016

* If you have not already done so, please create an account on slnova.org then go to <u>http://www.slnova.org/GUTS/projects/20704/</u> to check that a model can load and run.

Introductions

Irene Lee

Hal Scheintaub

And students ...

Imara Max Jack

Audrey Michael

Overview and Logistics

 3-hour hands-on introduction to StarLogo
Nova and Modeling & Simulation as a way to integrate CS in Science

- Your role: computer modeler and computational scientist;
- Report out as student and as a teacher.

Norms and Expectations:

- -Maintain a positive learning environment
- -<u>Help</u> one another
- -Acknowledge that we are learning something <u>new</u> that is sometimes <u>difficult</u>
- -Celebrate and be <u>excited</u> about all progress
- -Model the <u>dispositions we'd like to see in our</u> <u>students</u>

About Project GUTS

NM Adventures in Modeling (MIT & SFI 2003, NSF-ITEST) Project GUTS afterschool (SFI, 2007, NSF-AYS) 2014+ embedding Project GUTS during the school day!

Goals for the Workshop

- Gain understanding of using models to run experiments
- Gain understanding of how CS relates to modern scientific practice
- Gain understanding of computational thinking in the context of modeling and simulation.
- Learn how to create a simple Agent-based Model
- Design and conduct an experiment using your model as a testbed.

Workshop agenda

- Mystery Model
- CS in Science Module 1: introduction to modeling and simulation
- Explore another CS in Science module (ecosystems or greenhouse gases)
- Wrap-up and discussion

Introduction to Computer Modeling and Simulation

-Mystery model

-http://www.slnova.org/GUTS/projects/36743/

- use model observation form
- also, give a quick tour of the interface.
- introduce setup and forever

Setup and Forever blocks

CS in Science--The Big Picture

- -Use-Modify-Create Approach
- -Guide on the Side
- -Building vs. Using Models
- -Study real-world phenomena..

-cheaply, more safely, more conveniently -in ways otherwise impossible

CS in Science modules

- Modules for science classroom integration:
 - Module 2a <u>Water Pump</u>
 - Module 2b <u>Greenhouse Gases</u>
 - Module 3 <u>Ecosystems</u>
 - Module 4 <u>Chemical Reaction</u>

Full modules available at projectguts.org/resouces and code.org/curriculum/science

crowing op minking berenimeany

Modeling and Simulation

Introduction to StarLogo Nova Flower Turtles

- We use StarLogo Nova (slnova.org) to explore emergent phenomena & Complex Adaptive Systems.
- Users create simulations by writing simple rules for individual "agents".
- No sophisticated mathematics or advanced programming skills are required.

StarLogo Nova Guided Tutorial

• Visit the Project GUTS MOOC at guts-cs4hs.appspot.com

 Scroll down and click on Module 1: Introduction to Computer Modeling and Simulation

Follow along with Lesson 2 Activity 1a - Guided Tour

StarLogo Nova

Computer Science Concepts

- Instructions
- Computer Program
- Looping
- Iterations
- Conditionals
- Variables
- Remixing

The World & Turtle Pages

Pair Programming- a kid's perspective

- •Driver & Navigator protocols
- •Switching often
 - -(every 7 to 10 minutes)

https://www.youtube.com/watch?v=vgkahOzFH2Q

Pedagogy for Building Models

- -Pair Programming
 - -Drivers
 - -Navigators
 - -Why???

http://mediad.publicbroadcasting.net/p/shared/npr/styles/placed_wide/nprshared/2 01310/208254582.jpg

Flower Turtles

(instructing agents to impact their environment)

-Login to StarLogo Nova, go to the GUTS gallery http://www.slnova.org/GUTS/

-Open and <u>Remix</u> the project called "Lesson 2a- Flower Turtles- Tutorial Introduction Project" <u>http://www.slnova.org/GUTS/projects/4703/</u>

StarLogo Nova Blocks Review

Terms to Remember

- Agent
- Location
- Heading
- Steps

- Iteration
- Setup
- Runtime
- Random

Growing Up Thinking Scientifically

Modeling and Simulation

Conditionals and Boolean Logic Trailblazer and Bumper Turtles

Review from Flower Turtles

- What commands enabled turtles to <u>impact</u> their environment?
- What could an agent leaving trails represent in a real world scenario?

Instructions

- Starting and ending in the same place.
- Using a pencil, draw the path in the CENTER of squares.
- Pick up ALL the gold while avoiding the hazards.
- Color the squares as necessary according to the following rules:
 - Take a step forward.
 - If you are standing on a RED square, then turn right by 90 degrees
 - Else If you are standing on a **BLUE** square, then turn left by 90 degrees
 - Else If you are standing on a BLACK square, then turn right by 180 degrees
- Trade your map with your partner.

Trailblazer Learnings

- Different instructions can be followed based on conditions (what color square you are on).
- Algorithms are sequences of instructions that perform a task.
- Each different path we created can be thought of as a different algorithm.
- **Discussion-**
- •Are some better algorithms than others?
- •Why or why not?

(see http://compass.ups.com/ups-drivers-avoid-left-turns/)

Bumper turtles

- Now we are going to instruct our turtles to follow different instructions based on conditions.
- Use the same rules as trailblazers:
- If you are standing on a RED square, then turn right by 90 degrees
- Else If you are standing on a **BLUE** square, then turn left by 90 degrees
- Else If you are standing on a BLACK square, then turn right by 180

Setup and Forever blocks

New StarLogo Nova Blocks

Geolor red ۲.

Bumper Turtles Challenge

- Start with the program called "Bumper Turtles starter" program <u>http://slnova.org/GUTS/projects/9383/</u>
- Click on the "Paint Landmarks" push button and see the program execute the code provided.
- Remix the project
- Your challenge is to make the turtles react to the landmarks created by the "Paint Landmarks"

Bumper Turtles Progress Monitor

Goals!

- Add logic so turtles react to red squares by turning right by 90°
- Add logic so turtles react to blue squares by turning left by 90°
- Add logic so turtles react to black squares by turning around 180°

Bonus!

Change the number of landmarks drawn in the "Paint Landmarks" procedure

Partial Solution

i d	terrai	n color]=⊑œ	nolog	red	•
rig	ht by 🖿	90 deg	js			
መ (~~						
-		_				

Discussion

• What could these trails and bumpers represent in Bumper Turtles model?

Growing Up Thinking Scientifically

Modeling and Simulation

Probability with Dice and Data, Wiggle Walk, and Colliding Turtles

Using Probability

- Next, we are going to learn about probability (or the likelihood of something happening).
- Then we are going to use probability to make turtles do a "wiggle" walk.

Dice and Data

-Gain understanding through hands-on exercise -Materials used

Roll one die

• Record the result using a hatch mark.

1	Sum:
2	Sum:
3	Sum:
4	Sum:
5	Sum:
6	Sum:

Roll one die

• Possible result of 50 rolls.

Roll two dice

 Record the result with a hatch mark

2 dice (subtraction)	# of occurrences	Sum of tally
5		
4		
3		
2		
1		
0		
-1		
-2		
-3		
-4		
-5		

Roll two dice

• Possible result of 50 rolls.

What does this have to do with a modeling and simulation?

- One die represents right turn amount, the other represents left turn amount.
 Bight turn
- Most common outcome is ?

3	Right turn							
	-	1	2	3	4	5	6	
š	1	0	1	2	3	4	5	
m	2	-1	0	1	2	3	4	
Left tu	3	-2	- 1	0	1	2	3	
	4	-3	-2	-1	0	1	2	
	5	-4	-3	-2	-1	0	1	
	6	-5	-4	-3	-2	-1	0	

Random function

- We can mimic a roll of a die in StarLogo Nova using the random command.
- Random 6 will return a number between 0 and 5.

In StarLogo Nova

• We use a single random function like a single die.

In StarLogo Nova

• We use two randoms to represent rolling two dice.

Wiggle Walk

 What kind of motion does this produce when run repeatedly?

What's really going on?

1. Agent has an initial heading.

2. Agent turns left by some random number of degrees between 1 and 6. In this case, it is 2 degrees. (Image not to scale)

3. Agent turns right by some random number of degrees between 0 and 5. In this case, it is 5 degrees, so the final heading is 3 degrees to the right of the original heading. (Image not to scale)

 Agent takes one step forward at new heading. (Image not to scale)

Self-test of understanding

Match the command blocks a, b, c, and d with the path created by an agent following those blocks.

Growing Up Thinking Scientifically

Modeling and Simulation

Colliding Turtles

Collisions

New Command: Collision

 Collisions occur when two agents bump into one another. (They do not need to be centered on the same patch.)

Colliding Turtles

New Command: Collision

Colliding Turtles

New Command: Collision with a condition

New StarLogo Nova Blocks

Agent-Agent Interactions Your Challenge: Colliding Turtles

Goals!

- http://www.slnova.org/GUTS/projects/73800/ and REMIX it.
- Have the turtles move forward with a little wiggle in their walk.
- Add detection block (collision) so turtles react to each other
- Change a turtle's trait after a collision [size, color, shape, ?]

Bonus!

Upon colliding with a red turtle, have blue turtles react by changing their color to red.

setimy	<u>•</u> @ []
~	

Review from Colliding Turtles

- What could collisions represent in the real world?
- Why do we use probability in models?

Modeling and Simulation

Modeling the Spread of Disease Designing and Running Experiments

An Example:

- Ebola virus disease (EVD)
- Transmitted to humans from wild animals and then via human-human contact
- Colorized transmission electron micrograph (TEM) of ebola virus virion

Transmission Cycle

• Ebola

CT for the Epidemic Model

- We are going to turn our colliding turtles model to make it into an epidemic model.
- What do we need? (agents and behavior)
- How do we formulate the task/problem so it can be studied/solved using a computer?

Epidemic Model

- Agents:
- Environment:
- Behaviors:
- CS concepts: Variables and Traits

CS Concept Traits & Variables

- Traits & variables are containers for holding values.
- Think of a variable as a box with a label.
- In StarLogo Nova, sliders can be used to hold values and set values as inputs to the model.

Pop	oulatio	on		
min:	0] — o— r	nax:	1000

Create a New StarLogo Nova widget

- Name the widget
- Select "Horizontal Slider"

Create Widget		×
Name of widget:	population]
O Push button	 Horizontal Slider 	aç.
Toggle button	Table	
O Data Box	C Line Graph	
Label	O Bar Graph	
Add	d Widget	

New StarLogo Nova widget

- Make a new slider to control the initial number of turtles.
- Change the max value to 500 by typing in 500 next to max and **hitting the return key**.
- Click on "Edit Widgets" again to get out into editing mode and back into play mode.

Use the New Widget

population	-	
min: 0 0 max: 500	population	

- We now have a way to set the number of turtles through the user interface with a slider.
- We can get the value of population in code.
- Replace the # in create do block with population slider value.

Epidemic Model

- Now let's add a new slider to hold a value called the transmission rate.
- This rate is the percentage of time a disease gets passed from one person to another upon collision.

2nd slider- Transmission Rate

tran	smissio	n rate	
min:	0 -	O max:	10

• Add a second slider for transmission

Use the Transmission Rate Widget

- We are rolling a 100-sided die. If the result is less than the transmission rate, pass the disease on.
- How often should we roll less than the transmission rate?
- What kind of distribution does the roll of a single die give us?

Epidemic Model Progress Monitor

Goals!

- Create several hundred blue turtles and a few red turtles [hint: Setup]
- Make them wiggle! [hint: Forever]
- Create a collision block in which blue turtles turn red when they encounter red turtles [hint: Lesson 4 Student Activity #2 Guide]
- Create a slider and an if-then for the probability of transmission rate [hint: Lesson 4 Student Activity #2 Guide]

Bonus!

- Add a line graph with a line for infected turtles and one for healthy turtles [hint: Lesson 6 Student Activity #1]
- Add a slider (or more) for one (or more) of the following:
 - ♦ Number of original healthy population
 - ♦ Number of original sick population

Save and Test your Model

- Try changing the transmission rate
- Where in your code will the transmission slider value go?

Next Steps-

- Use your model as an experimental test bed
- Is anything missing if you wanted to collect data?

Review

- What can this model tell you?
- What is the impact of changing the transmission rate?
- What other things move through a population like a disease?

Modeling and Simulation

Exploring Content Area Modules
CS in Science Modules

Module structure:

Lesson 1: Engage and use a base model Lesson 2: Explore and decode Lesson 3: Experiment and explain Lesson 4: Extend and experiment Lesson 5: Evaluate

*assumes you have completed Module 1.

CS Concept Procedures

 Procedures are stacks of commands that perform a particular function and can be given a name.

procedure: move	call: move 💌
→ add parameter	
left by random 35 degs	
right by random 35 degs	
forward Et	

Decoding Models

Greenhouse Gases

GUTS project #6069

The world page

Sun page

Solar Energy page

CO2 page

Car page

Heat page

Reflected energy page

Ecosystems

GUTS project #21061 Rabbit hop procedure Rabbit reproduce proc. Rabbit die procedure Rabbit collide procedure Grass sprout procedure The world page

Modifying Models

Greenhouse Gases

- REMIX GUTS project #6069
- Change albedo
- Make a factory
- Limit car driving
- Change rate of decay / sequestration

Ecosystems

REMIX GUTS project #21061 Change repro. rate Change initial populations Change sprouting rate

Add a predator

Add hunting

Running experiments

- Design and run experiments.
 Use the experimental design form.
- What is the impact of the change you made?
- How would you assess whether this model is valid?

Scientific practices covered

- Take a look at the Scientific Practices form
- Give examples of how we covered each one through computer modeling and simulation.

In closing:

-Reflect!

-In small groups (2 pairs) discuss:

- -What was the best part of the day?
- -What was the most exciting thing you learned?

Be ready to share!

Project GUTS resources

•Our website: <u>projectguts.org</u> -top menu, click on **Resources** -top menu, click on **Curriculum**

•Our MOOC: <u>guts-cs4hs.appspot.com</u>

•http://code.org/curriculum/science

•All modules & resources are free

Did we meet the Goals for the Day?

- Gain understanding of using models to run experiments
- Gain understanding of how CS relates to modern scientific practice
- Learn how to create a simple Agent-based Model
- Design and conduct an experiment that uses a computer model as an experimental testbed.
- Explore existing modules and models

THANK YOU!

Websites:

projectguts.org (curriculum & resources tabs)
code.org/curriculum/science

Contact information:

ireneannelee@gmail.com

ialee@mit.edu

