
586  MATHEMATICS TEACHER | Vol. 105, No. 8 • April 2012

&&&&
O

ne of the most rewarding accomplishments of working with 
preservice secondary school mathematics teachers is help-
ing them develop conceptually connected knowledge and 
see mathematics as an integrated whole rather than isolated 
pieces. The NCTM Connections Standard (2000) states: 

“Problem selection is especially important because students are unlikely to 
learn to make connections unless they are working on problems or situa-
tions that have the potential for suggesting such linkages” (p. 359). 

To help students see and use the connections among various math-
ematical topics, we have paid close attention to selecting such problems 
as the Three Altitudes of a Triangle problem:

Construct the three altitudes of a triangle. What is true about 
these altitudes? Does your finding hold for other kinds of 
triangles? Define the orthocenter of a triangle. Prove your 
conjecture.

STUDENTS’ INVESTIGATION AND THEIR CONJECTURES
We presented the problem to preservice teachers (referred to here as 
students) in our Geometry for Teachers class. Three class sessions over 
two weeks for a total time of four hours were provided for students to 
explore and reason about the problem. In each session, students spent 
most of the time working in small groups of two or three. 

After recalling the definition of an altitude of a triangle, the groups 
first used The Geometer’s Sketchpad (GSP)® to construct an arbitrary tri-
angle and three lines, each through a vertex perpendicular to the opposite 
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side. Their constructions led students to observe that 
the three lines containing the altitudes (hereafter,
altitude lines) meet in a point. When students dragged 
any of the vertices of the triangle to change its shape 
and size, they saw that their finding always held (see 
fig. 1). They summarized as follows: “For any trian-
gle, the three altitude lines intersect at a single point, 
which is called the orthocenter of the triangle.”

The process of making this conjecture seemed 
straightforward. However, as always when conduct-
ing mathematical explorations, students knew that 
the next step would be a challenge—either prove 
the conjecture or give a counterexample. So they 
continued their work on this problem in groups 
and tried to come up with a proof. We teachers 
circulated around the room, observing each group’s 
work to monitor progress. Only when students had 
difficulties did we intervene by asking a question 
or a series of questions to lead them to think more 
deeply or think from a different viewpoint. 

PROOFS USING EUCLIDEAN GEOMETRY
Proof 1
Some students in the class who had taken the col-
lege geometry course suggested that we apply Ceva’s 
theorem to this problem. The theorem states: 

Using technology to explore the Three Altitudes of a Triangle 
problem, students devise many proofs for their conjectures.
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 Three lines drawn from the vertices A, B, and C of 
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One student presented her group’s proof to the 
class (see fig. 2). This proof works only for acute 
triangles, but similar proofs, with minor adjust-
ments, can be done for obtuse and right triangles. 
This task is left for readers, for this proof and all 
other proofs discussed here.

From this group’s proof, we can see that apply-
ing Ceva’s theorem makes the proof easy. However, 
Ceva’s theorem is usually introduced in a college 
geometry course, and its proof is generally more 
complex than directly proving the concurrency of 
the three altitudes or altitude lines. As a result, the 
proof would not greatly help high school geometry 
students understand the properties of altitudes or 
of the orthocenter. So we encouraged students to 
use the mathematical concepts that they learned in 
high school to prove their conjecture.

Aiming at generating some insightful ideas 
for other proofs, we guided students to do 
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further investigations with GSP. We suggested that 
students construct segments DE, EF, and FD in 
�ABC (see fig. 3). After the three segments were 
constructed to form �DEF, the groups observed 
this new triangle and decided to measure the angles 
formed by the three altitudes and the three newly 
constructed segments. Using the measurements 
shown in figure 3, students discovered that the 
three altitudes of �ABC bisected the three interior 
angles of �DEF—in other words, they were the 
three angle bisectors of �DEF. 

We further suggested that students hide seg-
ments DE, EF, and FD but construct three lines, 
each of which passed through a vertex of the origi-
nal triangle parallel to its opposite side (see fig. 4), 
and that they investigate the resulting triangle 
formed (�LMN). By measuring the angles and 
the lengths of the segments shown in figure 4, 
students discovered that each of the three altitudes 
was perpendicular to and bisected a side of �LMN. 

These investigations and findings stimulated stu-
dents’ thinking. Students had recently learned that 
the three perpendicular bisectors of any triangle are 
concurrent, as are the three angle bisectors of any 
triangle. Naturally, many students considered using 
these facts in their proofs. 

Proof 2
Choosing between the perpendicular and the angle 
bisectors, students found it easier to apply the 
theorem related to the three perpendicular bisec-
tors and did so first. Students realized that to prove 
that an altitude line of �ABC is a perpendicular 
bisector of a side of �LMN, they needed to prove 
that this line bisects a side of �LMN. Through 
observation and group discussion of the construc-
tion shown in figure 4, students found that a 
proof could be accomplished by using quadrilater-
als such as ALBC and NABC, each of which could 
be demonstrated to be parallelograms. Figure 4
shows a proof written by one group. 

Proof 3
After making sure that students understood the 
proof shown in figure 4, we suggested that they try 
to prove that the three altitudes of �ABC are the 
three angle bisectors of �DEF (see fig. 3).

Students knew that they needed to prove that 
∠EDC ≅ ∠FDB to show that ∠EDA ≅ ∠FDA, a 
result indicating that altitude AD bisects ∠EDF. 
However, they experienced difficulties in seeing 
how to do so. To help them proceed, we first asked 
them the following leading questions:

• “Can you construct the circumcircle of �ABD?”
• “What do you notice about the circle?”
• “How could you explain your finding?” 

 

(a)

(b)

(c)

Fig. 1  The three altitude lines of a triangle intersect at a 

single point whether the triangle is acute, obtuse, or right.
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Students constructed the circle that circum-
scribes �ABD, although some needed a little help. 
They all noticed that point E appeared to be on 
the circle (see fig. 5). Further explorations led stu-
dents to see quite a few “four points on a circle,” or 
cyclic quadrilaterals, in the figure. Naturally, they 
thought of a way of using the theorems related to 
cyclic quadrilaterals to complete their proof.

As a class, we then reviewed the cyclic quad-
rilateral theorems and their converses to prepare 
students to apply these theorems: 

• Theorem 1: If a quadrilateral is inscribed in a cir-
cle, then its opposite angles are supplementary. 

• Theorem 2: If two angles inscribed in a circle 
intercept the same arc, then they are congruent.

Fig. 2  One group’s proof applied Ceva’s theorem.

Fig. 3  The three altitudes of �ABC are the three angle bisectors of �DEF. 

Fig. 4  The three altitudes of �ABC are perpendicular bisectors of the sides of �LMN. 
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• Theorem 3: If opposite angles of a quadrilateral 
are supplementary, then the quadrilateral can be 
inscribed in a circle.

• Theorem 4: If two angles intercepting the same 
segment from its same side are congruent, then 
they can be inscribed in a circle, with the seg-
ment as a chord of the circle.

For complete proofs of these theorems, see Jiang 
and Pagnucco (2002).

Using these theorems, one group found a way to 
prove that ∠EDC ≅ ∠FDB. Their reasoning follows:

A, B, D, E [in fig. 5] are on a circle since both 
∠AEB and ∠ADB are right angles and hence 

congruent, and both angles intercept the same seg-
ment AB from its same side (by theorem 4). Hence, 
m∠BAE + m∠BDE = 180° (by theorem 1). But 
m∠EDC + m∠BDE = 180° (a straight angle), and 
so ∠EDC ≅ ∠BAE. Similarly (considering cyclic 
quadrilateral ACDF), we can prove that ∠FDB
≅ ∠BAE. So ∠EDC ≅ ∠FDB by transitivity, i.e., 
altitude AD bisects ∠FDE. In a similar fashion, we 
can prove that the other two altitudes of �ABC
respectively bisect the other two interior angles of 
�DEF. Therefore, the three altitudes of �ABC are 
the three angle bisectors of �DEF. Since the three 
angle bisectors of any triangle intersect at [a single] 
point, the three altitudes of �ABC are concurrent. 

We asked this group of students to explain their 
reasoning as clearly as possible to the class and 
encouraged the other students to ask questions 
until they fully understood the proof.

Proofs 2 and 3 and the GSP investigations that 
facilitated insights into these proofs helped students 
see that mathematical ideas are inter connected: 
The altitude lines of a triangle are also the perpen-
dicular bisectors, or angle bisectors, of a related 
triangle. Inspired by these new findings and proofs, 
students became curious and were eager to gener-
ate more proofs on their own. This was a wonder-
ful teaching moment to engage students in further 
exploration and brainstorming and thus help them 
“develop an increased capacity to link mathemati-
cal ideas and a deeper understanding of how more 
than one approach to the same problem can lead to 
equivalent results …” (NCTM 2000, p. 354). Fig. 5 ABDE is a cyclic quadrilateral.

Fig. 6  This is another proof involving cyclic quadrilateral theorems.
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Proof 4
Small-group explorations and conversations contin-
ued. Several groups decided to use the cyclic quadri-
lateral related theorems that they had just reviewed 
in class to develop a new proof. With coaching and 
guidance from the teachers, they developed the 
proof shown in figure 6.

Proof 5
Prompted by the similar triangle concept used in 
the proof that applied Ceva’s theorem, some groups 
decided to take advantage of the proportional rela-
tionship among corresponding sides of similar tri-
angles. With only minor prodding from the teach-
ers, they constructed the proof shown in figure 7.

A PROOF USING TRIGONOMETRY
While working through different approaches to 
a proof using Euclidean geometry, one group of 
students noticed that this problem involved many 
right triangles (e.g., �BCF and �AOE in fig. 6). 
They reasoned that this was a good opportunity to 
use right-triangle trigonometry to create a proof. 
As they did in the proof using cyclic quadrilater-
als, students constructed two altitudes, BE and CF, 
in �ABC. After labeling the intersection point of 
BE and CF as O, they constructed ray AO, which 
intersected BD at D (see fig. 8). Their goal was to 
prove, using trigonometry, that AD ⊥ BC. Their 
reasoning follows:

 ∠ABE and ∠ACF [in fig. 8] are congruent because 
each is complementary to ∠FAE. Let’s use g to 
represent each angle. In right triangle ABE, tan γ = 
AE/BE. In right triangle OCE, tan g = OE/CE. So

AE
BE

OE
CE

= ,

implying that

OE
AE

CE
BE

= .

 In right triangle AOE, tan a = OE/AE. In right 
triangle BCE, tan b = CE/BE. Therefore, tan a = 
tan b. So a ≅ b. (This relationship holds because 
both a and b are acute angles.) Applying the tri-
angle angle-sum theorem to �BCE and �ACD, we 
have ∠ADC ≅ ∠BEC (a right angle), which means 
that ∠ADC is also a right angle and that AD ⊥ BC. 
Therefore, AD is the third altitude of �ABC, and 
the three altitudes intersect at point O. 

This proof using trigonometry can be done a 
little differently by using similar triangles because 
all the proportions involved are the numerical 

Fig. 7  This proof uses triangle similarity.

Fig. 8  The altitudes create right triangles and a chance to 

use trigonometry.
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relationships of the corresponding sides of related 
similar triangles. However, the advantages of 
using trigonometry are that it shows the appli-
cation of trigonometry in geometric proofs and 
also makes finding those numerical relationships 
more convenient. Hence, students were able to 
see the connections between different branches of 
mathematics.

A PROOF USING COORDINATE GEOMETRY 
In a homework assignment, we challenged students 
to find a coordinate geometry proof. Without any 
hint from us, several students were able to produce 
the proof shown in figure 9.

At a later class session, we asked students to 
compare the coordinate geometry method with the 
other methods used in the previous proofs. They 

commented that although they had enjoyed the 
previous proofs, they liked this method better: “It 
not only showed the connection between algebra 
and geometry, but additionally was more straight-
forward, making an otherwise difficult task much 
easier.” 

A PROOF USING VECTOR ALGEBRA
One student created a proof using vector algebra, 
as shown in figure 10. When this method was 
presented to the class at a later session, students 
were impressed by its beauty and compactness. 
They felt that vector algebra is easier to apply than 
geometry or trigonometry and requires knowl-
edge of fewer rules, and they expressed interest in 
using vector algebra whenever appropriate in their 
future problem solving.

Fig. 9  Coordinate geometry can be used for an elegant proof. 

Fig. 10  This proof uses vector algebra.
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CONCLUSION
After all the proof approaches were presented and 
discussed in class, students were excited about 
what they had learned and felt ownership of the 
proofs. They commented that they not only under-
stood how to prove that the three altitude lines of 
any triangle are concurrent but also saw connec-
tions between this problem situation and various 
mathematical topics. In addition, their explorations 
of multiple approaches to proofs led beyond proof 
as verification to more of illumination and system-
atization in understandable yet deep ways (de Vil-
liers 1999); expanded their repertoire of problem-
solving strategies; and developed their confidence, 
interest, ability, and flexibility in solving various 
types of new problems. These benefits, in turn, will 
be passed on to their own students.
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