



**Studies in Science Education** 

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rsse20

## What you find depends on how you see: examining asset and deficit perspectives of preservice science teachers' knowledge and learning

Ron Gray, Scott McDonald & David Stroupe

To cite this article: Ron Gray, Scott McDonald & David Stroupe (2021): What you find depends on how you see: examining asset and deficit perspectives of preservice science teachers' knowledge and learning, Studies in Science Education, DOI: 10.1080/03057267.2021.1897932

To link to this article: https://doi.org/10.1080/03057267.2021.1897932



Published online: 10 Mar 2021.



🖉 Submit your article to this journal 🗗



View related articles



🕖 View Crossmark data 🗹

#### **REVIEW ARTICLE**



Check for updates

# What you find depends on how you see: examining asset and deficit perspectives of preservice science teachers' knowledge and learning

#### Ron Gray <sup>[]</sup>, Scott McDonald<sup>b</sup> and David Stroupe<sup>c</sup>

<sup>a</sup>Center for Science Teaching and Learning, Northern Arizona University, Flagstaff, AZ, United States; <sup>b</sup>Department of Curriculum & Instruction, Pennsylvania State University, State College, PA, United States; <sup>c</sup>Department of Teacher Education, Michigan State University, East Lansing, MI, United States

#### ABSTRACT

This article explores how scholars have framed studies of preservice science teacher (PST) knowledge and learning over the past twelve years. We examined relevant studies between 2008 and 2020, coding them by theoretical perspective (cognitive or sociocultural), knowledge perspective (deficit or asset), and teaching level (elementary, secondary, or both) of the PSTs in the study. We found patterns between knowledge and theoretical perspective use, perspective use over time, and differences between studies of elementary and secondary level PSTs. We conclude with a proposed model of theoretical and knowledge perspectives as seen in the reviewed studies as well as further questions for the field.

#### **ARTICLE HISTORY**

Received 13 October 2020 Accepted 26 February 2021

#### **KEYWORDS**

Preservice teacher knowledge; science education; learning theory

The catalyst for this manuscript was an academic conference the authors recently attended. During the conference, multiple researchers presented studies about preservice teachers (PSTs) learning to become science teachers. In many presentations, researchers described PST learning in terms of lacking or gaining knowledge domains, such as pedagogical, content, or pedagogical content knowledge. More specifically, such presentations noted how PSTs failed to meet the researchers' predetermined criteria for adequate learning on pre and post-assessments of these various knowledge domains. The overarching message of such presentations was clear: many researchers equated PST learning with knowledge they lacked or failed to acquire. For the authors this brought to mind Dillon and Avraamidou's (Dillon & Avraamidou, 2020) question: 'Do we really need another study that pre-service teachers don't know much about anything?' (p. 4). The message about PSTs also sparked a question of our own - Is there an underlying structure in these research studies that guides the way researchers position PSTs and their learning? This literature review is an investigation focused on addressing our guestion.

**CONTACT** Scott McDonald Smcdonald@psu.edu

Authors, 1, 2, 3 should be considered joint first authors for the manuscript © 2021 Informa UK Limited, trading as Taylor & Francis Group

2 👄 R. GRAY ET AL.

#### **Problem framing**

Debates about what PSTs should know, and the relationship of such knowledge to claims about learning, are varied and long-standing in teacher education, including the preparation of new science teachers. The emphasis on linking PST learning to the acquisition of knowledge domains extends from calls for a knowledge base for teacher preparation, which aligns with literature aiming to define pedagogical content knowledge (PCK) as a unique form of teacher knowledge (i.e., Carlsen, 1999; Magnusson et al., 1999; Shulman, 1987). Yet the conference experience made us wonder why researchers described PST learning in terms of knowledge they 'gained' or 'lacked' – including knowledge that might be considered incorrect and labelled as 'misconceptions' by some researchers – signalling a deficit perspective of PSTs. A deficit perspective of PST knowledge and learning is contrasted with asset-oriented perspectives (e.g., López, 2017), in which researchers attempt to understand how PSTs' knowledge, experiences, and identities serve as resources as they learn through sense-making and participation in varied and valued cultural practices. The seeming dichotomy between how researchers see PSTs from an asset or deficit perspective suggested a literature review in which we examine research by focusing on how researchers frame their work and how they position PSTs as learners rather than broadly characterising the knowledge based that has been developed around beginning teachers' learning to teach.

Given such different possibilities for framing PSTs, we examined the literature to better understand any connections between positioning PSTs and their learning (asset or deficit), theoretical and methodological approaches guiding data collection and analysis of PSTs learning, and the description of the results and how they describe PSTs learning relative to the learning measures. Specifically, we asked:

In literature about science teacher preparation, how is PST learning described in terms of asset or deficit perspectives about knowledge?

What patterns emerge around asset and deficit framings of PST learning relative to the theoretical perspectives taken by the researchers?

#### **Theoretical Framework**

We begin by distinguishing between the way deficit and asset perspectives describe PST learning. Next, we characterise two broad theoretical perspectives – cognitive and sociocultural – that frame the majority of studies about PST learning. Finally, we explain how distinctions between cognitive and sociocultural perspectives and the way they play out in terms of methods helped us categorise studies in the literature about PST learning during science teacher preparation programmes.

#### Deficit and asset perspectives about knowledge

Viewing research participants with a deficit perspective is not a new phenomenon. Taking a deficit perspective is pernicious because, as Davis and Museus (2019) suggest, such a lens 'serve as tools that maintain hegemonic systems and, in doing so, fail to place accountability with oppressive structures, policies, and practices within educational settings' (p. 1). Given the implicit and pervasive nature of deficit perspectives, our review looked for evidence of this framing in the way that researchers rhetorically position PSTs and their learning. As noted previously, researchers often frame PSTs from a deficit perspective through a comparison between the quantity or quality of PSTs' knowledge in various domains to an arbitrary and predetermined standard. Alternatively, researchers can describe PSTs from an asset perspective, in which knowledge is treated as a resource for people as they engage in sense-making and practices. We posit that researchers have explicit and tacit assumptions about knowledge and PSTs, and employ specific methodologies that reflect these assumptions (See Table 1 for comparisons).

We propose there are two important features of the assumptions about deficit and asset perspectives to note. First, in the context of teacher preparation, deficit perspectives put the onus on individual PSTs for having or lacking knowledge, whereas asset perspectives consider how an individual's knowledge serves as a resource for participation in larger learning contexts. Second, deficit perspectives assume an a priori framing of the world in which the knowledge required for teaching is defined by researchers without considering the individual understandings of the PSTs. From this perspective, the knowledge that a PST needs to engage in science teaching can be assessed on a standardised instrument. Individual PSTs can either meet or fail these predetermined standards for knowledge, and might require interventions to become aligned with the a priori defined goal state. In addition to positioning PSTs as less or incapable or in need of fixing, a deficit perspective also reinforces hegemonic notions of teacher knowledge which maintain power hierarchies by positioning PSTs, especially those in underrepresented groups, as being outside the epistemological norm. Asset perspectives, in contrast, describe how PSTs come to understand and participate in teaching using their knowledge and experiences as resources. Rather than compare the alignment of PSTs' knowledge to predetermined standards, researchers using an asset framing assume there will be an inherent difference between PSTs' understandings and the tentative implicit and explicit goals of a study. However, PSTs' learning, and ideally the study designed by researchers, should be responsive to the PSTs' current understandings.

|                        | Assumptions by researchers and methodologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deficit<br>perspective | <ul> <li>Tacitly or explicitly take the researcher's perspective/framing/knowledge as the 'correct' perspective/framing/knowledge, and holds participants to that standard.</li> <li>Place the responsibility for a lack of knowledge or action on preservice teachers rather than on contextual features, an absence of opportunities to develop different understandings, or an incorrect understanding of the assessment or task designed to evaluate knowledge gain.</li> <li>Propose future research that posits interventions needed to fix/remedy participants' incorrect knowledge.</li> </ul>                           |
| Asset<br>perspective   | <ul> <li>Tacitly or explicitly use a perspective that examines what/how/why participants view and act in the world in the ways that they do.</li> <li>Place the responsibility for learning on the context, learning environment via absence of opportunities to develop different understandings.</li> <li>Suggest future research that focuses on how the context can shift, or how researchers and participants can work together to redesign the learning environment to take advantage of the resources learners bring so that individuals have opportunities to productively participate in their own learning.</li> </ul> |

| Table 1. Assumptions in studies of preservice teacher knowledg | Table | 1. Assumptions | in | studies o | of r | preservice | teacher | knowleda | e. |
|----------------------------------------------------------------|-------|----------------|----|-----------|------|------------|---------|----------|----|
|----------------------------------------------------------------|-------|----------------|----|-----------|------|------------|---------|----------|----|

#### Theoretical perspectives on learning

Given a brief summary of deficit and asset perspectives on science PSTs' knowledge, we now describe cognitive and sociocultural perspectives on learning, and note how such lenses characterise PST learning (see Table 2 for a summary of key points, Danish & Gresalfi, 2018). We recognise there are other perspectives on PST learning, such as behaviourist or critical perspectives; however, we choose to focus on cognitive and sociocultural perspectives given their historical prominence in literature about science teacher preparation.

Cognitive perspectives view learning as an individual process in which information is acquired from local contexts and environments, organised into internal structures such as concepts or schema, and change states over time (Danish & Gresalfi, 2018). Often grounded in foundational work by Piaget, learning is described as the growth in terms of the number, complexity, and interconnectedness of knowledge structures in the brain, which are later accessed by the individual when relevant. Higher order learning and knowledge are seen as more general(izable) and abstract, so that concepts of this kind are useful across a variety of contexts. Sometimes, learning is described in terms of stable knowledge transfer and application across contexts (e.g., high/low, near/far transfer). In other cases, differences between individuals' ability to access knowledge across context is thought of in terms more dynamic and in-the-moment processes (e.g., p-prims, diSessa, 1993), in which concepts are constructed out of constituent parts as needed to engage in activities.

A foundational assumption of cognitive perspectives is that knowledge and learning are relatively context independent, and the main function of the learning context is the activation, addition to, or change of an individuals' set of knowledge objects. Thus, knowledge is given the primary role in characterising learning, and context is a secondary factor that impacts changes in knowledge (learning) or access to knowledge (application). Measures of knowledge tend to focus on benchmarks established by researchers in the form of instruments prior to engaging learners in some form of intervention, and then measuring with the same instrument again at the end to determine change (learning) and efficacy of the intervention.

| Cognitive                                                                                                                                    | Sociocultural                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Focuses on mental processes of individual learners                                                                                           | Focuses on participation of learners in the social practices within a particular context                                                                                       |
| Knowledge is representations of information in an<br>individual mind                                                                         | Knowledge and engaging knowledge stem from the<br>cultural and historical practices in which the individual<br>is immersed                                                     |
| Knowledge is inferred from observable behaviours connected by models of the mind                                                             | How one comes to know is inseparable from what one<br>comes to know. Cognition and knowing are a joint<br>accomplishment between individual and their<br>participatory context |
| Knowledge should be represented abstractly to allow for application across contexts                                                          | Transfer is seen as a pairing of individual and context and<br>considers both in terms of overlap between learning<br>context and transfer context                             |
| Motivation is an individual trait tied to existing individual<br>interests, has stability, and can be investigated<br>independent of context | People are not motivated or unmotivated, but act in those ways in relation to the practices of the context                                                                     |

Table 2. Cognitive and sociocultural learning theories (adapted from Danish & Gresalfi, 2018).

Sociocultural perspectives generally view learning in terms of on-going changes in practice (Danish & Gresalfi, 2018). Such perspectives see knowledge and participation as inextricably linked to the context in which individuals interact with actors, practices, and tools whose roles have been negotiated over time and thus are both historical and cultural. Learning, then, embodies complex processes by which people develop discourses and practices that involve speaking, acting, and being in the world. Rather than framing knowledge as concrete entities that an individual can transfer from setting to setting, sociocultural perspectives view knowledge as mediated between actors who create, shape, and negotiate meaning and practices in social activity. Importantly, sociocultural perspectives describe a family of theories that share similar features but also exhibit variations. For example, various sociocultural perspectives might emphasise communities, activities, tools, practices, and the role of individuals in different ways. However, each of these theory views learning as something different than a change in an individual's knowledge of domains.

Examples of scholars' work from cognitive and sociocultural perspectives on learning is evident in the literature about teacher preparation and teacher learning over the last few decades. For example, a cognitive perspective is clearly represented in work that emerged from Shulman's (1987) notion of PCK, which was his effort to characterise a specialised form of teacher knowledge independent of the content knowledge being taught. PCK had a profound impact on research about teacher preparation, and has provided the foundation for on-going analysis of teacher knowledge and the characterisation of further proposed knowledge domains, such as technological pedagogical content knowledge (TPCK), as well as the development of a variety of increasingly complex knowledge models that attempt to characterise requisite knowledge for teaching (for example, see Figure 1). These knowledge models are representative of the cognitive perspective on understanding teacher knowledge through a process of researchers defining and operationalising different knowledge domains within identified aspects of teaching practice.

The relationship between teaching practice and teacher knowing in sociocultural perspectives on teacher learning are most clearly instantiated in the practice-turn in teacher education, in which PSTs simultaneously begin to develop identities as teachers, encounter suites of daily and important practices used by teachers, participate in pedagogical rehearsals designed to represent classrooms, interact with their future students' communities and valued practices, and generally engage in increasingly authentic approximations of teaching practice (Grossman et al., 2009; Lampert, 2010; McDonald et al., 2013). These models emphasise the contextual and cultural nature of teaching and tend to focus analysis on the processes and practices of teaching as the locus of teacher knowing.

#### Methods

As noted, this review is not attempting to capture what PSTs know (or do not), nor what constitutes teacher learning across a broad segment of the field. Our focus is understanding the relationship between the two key theoretical perspectives on PST science teaching knowledge and learning (cognitive and sociocultural), as well as the framing of PST learning through deficit or asset lenses. Thus, we conducted a systematic and analytical review of the relevant literature. A systematic review is a method of making

#### 6 🕳 R. GRAY ET AL.



Figure 1. Model of Pedagogical Content Knowledge from Park and Oliver (2008).

sense of large bodies of information and may include both qualitative and quantitative analyses (Petticrew & Roberts, 2006). For this review, we did not attempt to be exhaustive given the vast literature base on PST learning. Instead, we sampled key journals in the field to look for patterns. Our review is informed by the steps suggested by Cooper (2010) and in PRISMA (Moher et al., 2009), which we describe below.

#### Phase 1: Identifying relevant articles

We first identified relevant articles using the Web of Science academic database, focusing on peer-reviewed journals chosen for their visibility and impact in the fields of science education and field of teacher education (see Table 3 for journals). We compiled a list of keywords (see Table 4) by adapting and extending words used in prior literature reviews on teacher knowledge (e.g., Davis et al., 2006; Van Driel et al., 2014). For example, van Driel,

| Table 5. Academic journals included in search.                                                                                                                                                                                                      |                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Science Education Journals                                                                                                                                                                                                                          | Education Journals                                                                                                                                         |
| Cultural Studies of Science Education<br>International Journal of Science Education<br>Journal of Research in Science Teaching<br>Journal of Science Teacher Education<br>Research in Science Education<br>Science Education<br>Science & Education | Cognition and Instruction<br>Journal of Teacher Education<br>Journal of the Learning Sciences<br>Teachers College Record<br>Teaching and Teacher Education |
|                                                                                                                                                                                                                                                     |                                                                                                                                                            |

Table 3. Academic journals included in search

| Primary search terms                                                                                                 | Van Driel et al. (2014)<br>search terms |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 'science' and                                                                                                        | 'science' and                           |
| <pre>'preservice' or 'student teach*' and</pre>                                                                      | 'teacher knowledge' or                  |
| 'teacher knowledge' or 'teacher learning' or 'teacher development' or 'teaching<br>practices' or 'teacher education' | 'pedagogical content<br>knowledge'      |
| Web of Science full query                                                                                            |                                         |

Table 4. Search term combinations (comparison of this study and Van Driel et al., 2014).

((TS = (science) AND TS = (preservice OR 'student teach\*') AND TS = ('teacher knowledge' OR 'teacher learning' OR 'teacher development' OR 'teaching practices' OR 'teacher education'))) AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article) Refined by: SOURCE TITLES: (JOURNAL OF SCIENCE TEACHER EDUCATION OR TEACHING AND TEACHER EDUCATION OR INTERNATIONAL JOURNAL OF SCIENCE EDUCATION OR RESEARCH IN SCIENCE EDUCATION OR SCIENCE EDUCATION OR JOURNAL OF RESEARCH IN SCIENCE TEACHER OR JOURNAL OF TEACHER EDUCATION OR SCIENCE EDUCATION OR JOURNAL OF RESEARCH IN SCIENCE TEACHING OR JOURNAL OF TEACHER EDUCATION OR RESEARCH IN SCIENCE EDUCATION OR COGNITION AND INSTRUCTION) OR TEACHERS COLLEGE RECORD OR CULTURAL STUDIES OF SCIENCE EDUCATION OR COGNITION AND INSTRUCTION) Timespan: 2008–2020. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-SSH, ESCI, CCR-EXPANDED, IC.

Berry, and Meirink's (Van Driel et al., 2014) review of science teacher knowledge was meant to extend Abell's (2007) chapter, using the same analytic criteria: 'science,' 'teacher knowledge,' and 'pedagogical content knowledge.' Their analysis was framed around a particular model of teacher knowledge (see Van Dijk & Kattman, Van Dijk & Kattmann, 2007) in which PCK is treated as a distinct knowledge domain. Early in our search for literature, however, we realised the keywords used in previous reviews limited the scope of articles that might describe PST learning. Therefore, we added additional keywords as shown in bold in Table 4 (e.g., 'teaching practices' and 'teacher development') to better match our definition of teacher knowledge as described above and to more fully include sociocultural perspectives.

We further refined our search to English language articles published between the years 2008 and 2020. We chose the starting date of 2008 because a seminal publication in the field of science education, *Taking Science to School* (National Research Council, 2007), was published in the US the previous year. Therefore, we began with a date of 2008 to identify articles about PST learning that appeared in the years since *Taking Science to School* informed science teacher preparation and research. The search was conducted in October 2020, and the parameters generated 224 studies which we considered sufficiently large enough for our analysis.

#### Phase 2: Refining and categorising the results

For the initial analysis, each author independently examined the abstracts of one-third of the identified studies. We coded each study as using a deficit or asset perspective based on the characteristics described in the theoretical framing sections, and the teaching level (elementary, secondary, or both) of the PSTs in the study. We used citations in the theoretical framework and characteristics of the data collection and analysis to code the theoretical perspective of each publication. For example, if a study tacitly or explicitly took the researcher's perspective/framing/knowledge as 'correct', and described whether participants met that standard (or not), we coded the study as a deficit perspective. Alternatively, if a study tacitly or explicitly used a perspective that attempted to understand what/how/why participants viewed and acted in the world and placed the onus on learning to the context or absence of opportunities to develop different understandings

rather than on incorrect ideas of the individual, we coded the study as having an asset perspective.

To determine the theoretical perspective of each study, we utilised the features of cognitive or sociocultural frameworks described in the theoretical perspectives section. For example, studies were coded as cognitive if the phenomenon of interest (e.g., learning to teach) defined a measure (e.g., an instrument) and then the value of that measure for an individual was an evaluation of the individual's quality/ability to produce some future social practice (e.g., teaching science to children). These studies often included measures of some domain, such as content knowledge, PCK, nature of science knowledge, or misconceptions. We coded studies as sociocultural that focused PSTs shifting participation in activities or practices, how context played a role in describing the phenomenon of interest, and how PSTs ideas and experiences were treated as resources (rather than misconceptions). Such studies employed data collection and analysis that focused on how and why PSTs shifted participation, such as agency, identity, and power.

Studies in which we had difficulty in coding according to the categories were retrieved and examined in further detail by all three authors. If we were unsure of how to categorise a study, it was marked for discussion through which we came to a consensus on the appropriate categorisation. In addition, each author reviewed a random selection of eight articles from the other two reviewers to ensure the reliability of our individual coding. Any discrepancies were discussed and consensus reached.

During the in-depth analysis of literature, we eliminated 78 studies that did not match our initial criteria. To be included, articles needed to have a primary focus on elementary or secondary PSTs' learning, be included in peer-reviewed journals, and be empirical with clearly articulated research questions or purposes. Articles from the original search were removed that focused on inservice teachers (e.g., Hutner & Markman, 2017), mentorship (e.g., Bradbury & Koballa, 2008), teacher educators or pedagogies (e.g., Scantlebury et al., 2008) or PSTs from other fields (e.g., Cáceres et al., 2010) as were commentaries (e.g., Treagust et al., 2015), review articles (e.g., Levy et al., 2013), and issue introductions (e.g., Mikeska et al., 2009). This resulted in a final selection of 146 published articles from the previous twelve years (see Table 5).

After coding, we sorted the articles into one of three categories: cognitive deficit, cognitive asset, and sociocultural asset. No examples of sociocultural deficit papers were found in the analysis. Below, we provide an example of each of the three categories of studies found in the analysis for context.

#### Cognitive deficit example

An example of a cognitive deficit paper is Demirdöğen et al. (2016) from the journal *Research in Science Education* titled 'Development and nature of preservice chemistry teachers' pedagogical content knowledge for nature of science.' From the paper's abstract, the authors state that '[T]he purpose of this case study is to delve into the complexities of the early development of preservice chemistry teachers' science teaching orientations, knowledge of learners, knowledge of instructional strategies, and knowledge of assessment during a two-semester intervention designed to enhance their pedagogical content knowledge (PCK) for teaching nature of science (NOS)' (p. 575).

|                                                                                                                                                                                                                               |                                            |      |                                                     | Deficit<br>or Asset | Theoretical   | Grade      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|-----------------------------------------------------|---------------------|---------------|------------|
| Title                                                                                                                                                                                                                         | Authors                                    | Year | Journal                                             | Framing             | Perspective   | Level      |
| The use of a computer<br>simulation to promote<br>scientific conceptions of<br>moon phases                                                                                                                                    | Bell, RL; Trundle, KC                      | 2008 | Journal of<br>Research<br>in Science<br>Teaching    | deficit             | cognitive     | elementary |
| The development of preservice<br>elementary teachers'<br>curricular role identity for<br>science teaching                                                                                                                     | Forbes, CT; Davis, EA                      | 2008 | Science<br>Education                                | asset               | sociocultural | elementary |
| Learning to teach science:<br>Personal epistemologies,<br>teaching goals, and practices<br>of teaching                                                                                                                        | Kang, NH                                   | 2008 | Teaching and<br>Teacher<br>Education                | asset               | sociocultural | secondary  |
| Exploring pedagogical content<br>knowledge in science<br>teacher education                                                                                                                                                    | Loughran, J; Mulhall, P;<br>Berry, A       | 2008 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | secondary  |
| Agency, Identity, and Social<br>Justice Education: Preservice<br>Teachers' Thoughts on<br>Becoming Agents of Change<br>in Urban Elementary Science<br>Classrooms                                                              | Moore, FM                                  | 2008 | Research in<br>Science<br>Education                 | asset               | sociocultural | elementary |
| Teaching for understanding:<br>The complex nature of<br>pedagogical content<br>knowledge in pre-service<br>education                                                                                                          | Nilsson, P                                 | 2008 | International<br>Journal of<br>Science<br>Education | asset               | cognitive     | elementary |
| Preservice elementary teachers'<br>views of their students' prior<br>knowledge of science                                                                                                                                     | Otero, VK; Nathan, MJ                      | 2008 | Journal of<br>Research<br>in Science<br>Teaching    | asset               | cognitive     | elementary |
| What can be learned from<br>writing about early field<br>experiences?                                                                                                                                                         | Trumbull, DJ; Fluet, K                     | 2008 | Teaching and<br>Teacher<br>Education                | deficit             | cognitive     | elementary |
| Turning crisis into opportunity:<br>Enhancing student-teachers'<br>understanding of nature of<br>science and scientific inquiry<br>through a case study of the<br>scientific research in severe<br>acute respiratory syndrome | Wong, SL; Hodson, D;<br>Kwan, J; Yung, BHW | 2008 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | secondary  |
| Personalising and<br>Contextualising Multimedia<br>Case Methods in University-<br>based Teacher Education: An<br>Important Modification for<br>Promoting Technological<br>Design in School Science                            | Bencze, L; Hewitt, J;<br>Pedretti, E       | 2009 | Research in<br>Science<br>Education                 | asset               | sociocultural | secondary  |
| The Nature of Relationships<br>among the Components of<br>Pedagogical Content<br>Knowledge of Preservice<br>Science Teachers: 'Ozone<br>layer depletion' as an<br>example                                                     | Kaya, ON                                   | 2009 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | secondary  |
| Novice Teachers' Attention to<br>Student Thinking                                                                                                                                                                             | Levin, DA; Hammer, D;<br>Coffey, JE        | 2009 | Journal of<br>Teacher<br>Education                  | asset               | sociocultural | secondary  |

### Table 5. Preservice science teacher knowledge articles included in the analysis arranged by year.

|                                                                                                                                                                         |                                                       |      |                                                     | Deficit<br>or Asset | Theoretical   | Grade      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|-----------------------------------------------------|---------------------|---------------|------------|
| Title                                                                                                                                                                   | Authors                                               | Year | Journal                                             | Framing             | Perspective   | Level      |
| Confronting Assumptions,<br>Biases, and Stereotypes in<br>Preservice Teachers'<br>Conceptualisations of<br>Science Teaching through<br>the Use of Book Club             | Mensah, FM                                            | 2009 | Journal of<br>Research<br>in Science<br>Teaching    | asset               | sociocultural | elementary |
| Developing Preservice<br>Elementary Teachers'<br>Knowledge and Practices<br>Through Modelling-Centered<br>Scientific Inquiry                                            | Schwarz, C                                            | 2009 | Science<br>Education                                | asset               | sociocultural | elementary |
| Constructing a Doubt-Free<br>Teaching Self: Self-Efficacy,<br>Teacher Identity, and Science<br>Instruction Within Diverse<br>Settings                                   | Settlage, J; Southerland,<br>SA; Smith, LK; Ceglie, R | 2009 | Journal of<br>Research<br>in Science<br>Teaching    | deficit             | cognitive     | elementary |
| Enhancement of Pre-Service<br>Teachers' Teaching<br>Interventions with the Aid of<br>Historical Examples                                                                | Spiliotopoulou-<br>Papantoniou, V;<br>Agelopoulos, K  | 2009 | Science &<br>Education                              | deficit             | cognitive     | secondary  |
| Learning to Teach Elementary                                                                                                                                            | Zembal-Saul, C                                        | 2009 | Science<br>Education                                | asset               | sociocultural | elementary |
| In Search of Well-Started<br>Beginning Science Teachers:<br>Insights from Two First-Year<br>Elementary Teachers                                                         | Avraamidou, L; Zembal-<br>Saul, C                     | 2010 | Journal of<br>Research<br>in Science                | asset               | cognitive     | elementary |
| Teaching about Ethics through<br>Socioscientific Issues in<br>Physics and Chemistry:<br>Teacher Candidates' Beliefs                                                     | Barrett, SE; Nieswandt, M                             | 2010 | Journal of<br>Research<br>in Science<br>Teachina    | deficit             | cognitive     | secondary  |
| Learning to Teach About Ideas<br>and Evidence in Science: The<br>Student Teacher as Change<br>Agent                                                                     | Braund, M; Campbell, B                                | 2010 | Research in<br>Science<br>Education                 | deficit             | cognitive     | secondary  |
| Prospective Teachers'<br>Difficulties in Interpreting<br>Elementary Phenomena of<br>Electrostatic Interactions:<br>Indicators of the status of<br>their intuitive ideas | Criado, AM; Garcia-<br>Carmona, A                     | 2010 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | elementary |
| Examining How Preservice<br>Science Teachers Navigate<br>Simulated Parent-Teacher<br>Conversations on Evolution<br>and Intelligent Design                               | Dotger, S; Dotger, BH;<br>Tillotson, J                | 2010 | Science<br>Education                                | asset               | sociocultural | elementary |
| Curriculum Design for Inquiry:<br>Preservice Elementary<br>Teachers' Mobilisation and<br>Adaptation of Science<br>Curriculum Materials                                  | Forbes, CT; Davis, EA                                 | 2010 | Journal of<br>Research<br>in Science<br>Teaching    | asset               | sociocultural | elementary |
| Teaching together and learning<br>together – Primary science<br>student teachers' and their<br>mentors' joint teaching and<br>learning in the primary<br>classroom      | Nilsson, P; van Driel, J                              | 2010 | Teaching and<br>Teacher<br>Education                | deficit             | cognitive     | elementary |

|                                                                                                                                                                               |                                                                                                         |      |                                                     | Deficit             |                            |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------|---------------------|----------------------------|----------------|
| Title                                                                                                                                                                         | Authors                                                                                                 | Year | Journal                                             | or Asset<br>Framing | Theoretical<br>Perspective | Grade<br>Level |
| Collaborative Reflection<br>through Dilemma Cases of<br>Science Practical Work<br>during Practicum                                                                            | Yoon, HG; Kim, M                                                                                        | 2010 | International<br>Journal of<br>Science<br>Education | asset               | cognitive                  | elementary     |
| Impacts of Contextual and<br>Explicit Instruction on<br>Preservice Elementary<br>Teachers' Understandings of<br>the Nature of Science                                         | Bell, RL; Matkins, JJ;<br>Gansneder, BM                                                                 | 2011 | Journal of<br>Research<br>in Science<br>Teaching    | deficit             | cognitive                  | elementary     |
| Preservice Elementary Teachers'<br>Adaptation of Science<br>Curriculum Materials for<br>Inquiry-Based Elementary<br>Science                                                   | Forbes, CT                                                                                              | 2011 | Science<br>Education                                | asset               | sociocultural              | elementary     |
| Constructing CoRes-a Strategy<br>for Building PCK in Pre-<br>service Science Teacher<br>Education                                                                             | Hume, A; Berry, A                                                                                       | 2011 | Research in<br>Science<br>Education                 | deficit             | cognitive                  | secondary      |
| Confidence and Perceived<br>Competence of Preservice<br>Teachers to Implement<br>Biodiversity Education in<br>Primary Schools-Four<br>comparative case studies<br>from Europe | Lindemann-Matthies, P;<br>Constantinou, C;<br>Lehnert, HJ; Nagel, U;<br>Raperf, G; Kadji-<br>Beltran, C | 2011 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive                  | elementary     |
| How Will We Understand What<br>We Teach? – Primary Student<br>Teachers' Perceptions of<br>their Development of<br>Knowledge and Attitudes<br>Towards Physics                  | Nilsson, P; van Driel, J                                                                                | 2011 | Research in<br>Science<br>Education                 | deficit             | cognitive                  | elementary     |
| The Progression of Prospective<br>Primary Teachers'<br>Conceptions of the<br>Methodology of Teaching                                                                          | Rivero, A; Azcarate, P;<br>Porlan, R; del Pozo,<br>RM; Harres, J                                        | 2011 | Research in<br>Science<br>Education                 | deficit             | cognitive                  | elementary     |
| Inquiry-based Instruction with<br>Archived, Online Data: An<br>Intervention Study with<br>Preservice Teachers                                                                 | Ucar, S; Trundle, KC;<br>Krissek, L                                                                     | 2011 | Research in<br>Science<br>Education                 | deficit             | cognitive                  | both           |
| Learning to critique and adapt<br>science curriculum materials:<br>Examining the development<br>of preservice elementary<br>teachers' pedagogical<br>content knowledge        | Beyer, CJ; Davis, EA                                                                                    | 2012 | Science<br>Education                                | deficit             | cognitive                  | elementary     |
| Balancing Teacher and Student<br>Roles in Elementary<br>Classrooms: Preservice<br>elementary teachers'<br>learning about the inquiry<br>continuum                             | Biggers, M; Forbes, Cl                                                                                  | 2012 | International<br>Journal of<br>Science<br>Education | asset               | cognitive                  | elementary     |
| From Teaching Physics to<br>Teaching Children:<br>Beginning teachers learning<br>from pupils                                                                                  | Findlay, M; Bryce, TGK                                                                                  | 2012 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive                  | secondary      |
| Using self-generated analogies<br>in teaching of<br>thermodynamics                                                                                                            | Haglund, J; Jeppsson, F                                                                                 | 2012 | Journal of<br>Research<br>in Science<br>Teaching    | deficit             | cognitive                  | secondary      |

|                                                                                                                                                                                                      |                                                                                                         |      |                                                     | Deficit<br>or Asset | Theoretical   | Grade      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------|---------------------|---------------|------------|
| Title                                                                                                                                                                                                | Authors                                                                                                 | Year | Journal                                             | Framing             | Perspective   | Level      |
| Cultural Memory Banking in<br>Preservice Science Teacher<br>Education                                                                                                                                | Handa, VC; Tippins, DJ                                                                                  | 2012 | Research in<br>Science<br>Education                 | asset               | sociocultural | secondary  |
| Primary Connections:<br>Simulating the Classroom in<br>Initial Teacher Education                                                                                                                     | Hume, AC                                                                                                | 2012 | Research in<br>Science<br>Education                 | deficit             | cognitive     | elementary |
| Designing for the Future: How<br>the Learning Sciences Can<br>Inform the Trajectories of<br>Preservice Teachers                                                                                      | Jurow, AS; Tracy, R;<br>Hotchkiss, JS;<br>Kirshner, B                                                   | 2012 | Journal of<br>Teacher<br>Education                  | asset               | sociocultural | elementary |
| Assessing Elementary Science<br>Methods Students'<br>Understanding About Global<br>Climate Change                                                                                                    | Lambert, JL; Lindgren, J;<br>Bleicher, R                                                                | 2012 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | elementary |
| Exploring Relations Among<br>Preservice Elementary<br>Teachers' Ideas About<br>Evolution, Understanding of<br>Relevant Science Concepts,<br>and College Science<br>Coursework                        | Rice, DC; Kaya, S                                                                                       | 2012 | Research in<br>Science<br>Education                 | deficit             | cognitive     | elementary |
| Opening the black box of field<br>experiences: How<br>cooperating teachers' beliefs<br>and practices shape student<br>teachers' beliefs and<br>practices                                             | Rozelle, JJ; Wilson, SM                                                                                 | 2012 | Teaching and<br>Teacher<br>Education                | asset               | sociocultural | secondary  |
| Prospective Elementary<br>Teachers' Science Teaching<br>Orientations and Experiences<br>that Impacted their<br>Development                                                                           | Avraamidou, L                                                                                           | 2013 | International<br>Journal of<br>Science<br>Education | asset               | sociocultural | elementary |
| Providing a Set of Research-<br>Based Practices to Support<br>Preservice Teachers' Long-<br>Term Professional<br>Development as Learners of<br>Science Teaching                                      | Aydin, S; Demirdogen,<br>B; Tarkin, A; Kutucu,<br>S; Ekiz, B; Akin, FN;<br>Tuysuz, M;<br>Uzuntiryaki, E | 2013 | Science<br>Education                                | deficit             | cognitive     | secondary  |
| A Self-Study of a Thai Teacher<br>Educator Developing a Better<br>Understanding of PCK for<br>Teaching about Teaching<br>Science                                                                     | Faikhamta, C; Clarke, A                                                                                 | 2013 | Research in<br>Science<br>Education                 | deficit             | cognitive     | both       |
| Potential Teachers' Appropriate<br>and Inappropriate<br>Application of Pedagogical<br>Resources in a Model-Based<br>Physics Course:<br>A 'Knowledge in Pieces'<br>Perspective on Teacher<br>Learning | Harlow, DB; Bianchini,<br>JA; Swanson, LH;<br>Dwyer, HA                                                 | 2013 | Journal of<br>Research<br>in Science<br>Teaching    | asset               | sociocultural | secondary  |
| Realising the Potential of an<br>Authentic Context to<br>Understand the<br>Characteristics of NOS and<br>NOT: You, me and UV                                                                         | Heap, R; France, B                                                                                      | 2013 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | elementary |

| <b>-</b>                                                                                                                                                       | A                                                                        | .,   |                                                     | Deficit<br>or Asset | Theoretical   | Grade      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|-----------------------------------------------------|---------------------|---------------|------------|
| litle                                                                                                                                                          | Authors                                                                  | Year | Journal                                             | Framing             | Perspective   | Level      |
| Teachers' Nature of Science<br>Implementation Practices<br>25 Years After Having<br>Completed an Intensive<br>Science Education<br>Programme                   | Herman, BC; Clough,<br>MP; Olson, JK                                     | 2013 | Science<br>Education                                | deficit             | cognitive     | secondary  |
| Teachers' Concepts of Spatial<br>Scale: An international<br>comparison                                                                                         | Jones, MG; Paechter, M;<br>Yen, CF; Gardner, G;<br>Taylor, A; Tretter, T | 2013 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | secondary  |
| Science Teaching Efficacy of<br>Preservice Elementary<br>Teachers: Examination of the<br>Multiple Factors Reported as<br>Influential                           | Kirik, OT                                                                | 2013 | Research in<br>Science<br>Education                 | deficit             | cognitive     | elementary |
| Learning to Assess Science in<br>Linguistically Diverse<br>Classrooms: Tracking Growth<br>in Secondary Science<br>Preservice Teachers'<br>Assessment Expertise | Lyon, EG                                                                 | 2013 | Science<br>Education                                | deficit             | cognitive     | secondary  |
| Teachers' Pedagogical Content<br>Knowledge of Scientific<br>Argumentation: The Impact<br>of Professional Development<br>on K-12 Teachers                       | McNeill, KL; Knight, AM                                                  | 2013 | Science<br>Education                                | deficit             | cognitive     | secondary  |
| Preservice teachers' capacity to<br>teach self-regulated learning:<br>Integrating learning from<br>problems and learning from<br>successes                     | Michalsky, T; Schechter,<br>C                                            | 2013 | Teaching and<br>Teacher<br>Education                | deficit             | cognitive     | secondary  |
| Exploring the Development of<br>Preservice Science Teachers'<br>Views on the Nature of<br>Science in Inquiry-Based<br>Laboratory Instruction                   | Ozgelen, S; Yilmaz-<br>Tuzun, O; Hanuscin,<br>DL                         | 2013 | Research in<br>Science<br>Education                 | deficit             | cognitive     | elementary |
| Exploring How Engaging with<br>Reflection on Learning<br>Generates Pedagogical<br>Insight in Science Teacher<br>Education                                      | Parker, J; Heywood, D                                                    | 2013 | Science<br>Education                                | asset               | cognitive     | elementary |
| Primary School Student<br>Teachers' Understanding of<br>Climate Change: Comparing<br>the Results Given by Concept<br>Maps and Communication<br>Analysis        | Ratinen, I; Viiri, J;<br>Lehesvuori, S                                   | 2013 | Research in<br>Science<br>Education                 | deficit             | cognitive     | elementary |
| Exploring the Progression in<br>Preservice Chemistry<br>Teachers' Pedagogical<br>Content Knowledge<br>Representations: The Case of<br>'Behavior of Gases'      | Adadan, E; Oner, D                                                       | 2014 | Research in<br>Science<br>Education                 | deficit             | cognitive     | secondary  |
| All We Did was Things Like<br>Forces and Motion ':<br>Multiple Discourses in the<br>development of primary<br>science teachers                                 | Danielsson, A; Warwick,<br>P                                             | 2014 | International<br>Journal of<br>Science<br>Education | asset               | sociocultural | elementary |

| Title                                                                                                                                                                                                                    | Authors                                                                         | Voor | lournal                                          | Deficit<br>or Asset | Theoretical   | Grade      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|--------------------------------------------------|---------------------|---------------|------------|
| nue                                                                                                                                                                                                                      | Authors                                                                         | rear | Journal                                          | Framing             | Perspective   | Level      |
| 'You Have to Give Them Some<br>Science Facts': Primary<br>Student Teachers' Early<br>Negotiations of Teacher<br>Identities in the Intersections<br>of Discourses About Science<br>Teaching and About Primary<br>Teaching | Danielsson, AT;<br>Warwick, P                                                   | 2014 | Research in<br>Science<br>Education              | asset               | sociocultural | elementary |
| Effectiveness of a Curricular and<br>Professional Development<br>Intervention at Improving<br>Elementary Teachers' Science<br>Content Knowledge and<br>Student Achievement<br>Outcomes: Year 1 Results                   | Diamond, BS; Maerten-<br>Rivera, J; Rohrer, RE;<br>Lee, O                       | 2014 | Journal of<br>Research<br>in Science<br>Teaching | deficit             | cognitive     | elementary |
| Confronting Conceptual<br>Challenges in<br>Thermodynamics by Use of<br>Self-Generated Analogies                                                                                                                          | Haglund, J; Jeppsson, F                                                         | 2014 | Science &<br>Education                           | deficit             | cognitive     | secondary  |
| The Practical Turn in Teacher<br>Education Designing<br>a Preparation Sequence for<br>Core Practice Frames                                                                                                               | Janssen, F; Westbroek,<br>H; Doyle, W                                           | 2014 | Journal of<br>Teacher<br>Education               | deficit             | cognitive     | secondary  |
| Juggling Our Mindsets:<br>Learning from Success as<br>a Complementary<br>Instructional Framework in<br>Teacher Education                                                                                                 | Schechter, C; Michalsky,<br>T                                                   | 2014 | Teachers<br>College<br>Record                    | deficit             | cognitive     | secondary  |
| The distinction between<br>inquiry-based instruction<br>and non-inquiry-based<br>instruction in higher<br>education: A case study of<br>what happens as inquiry in<br>16 education courses in three<br>universities      | Aulls, MW; Magon, JK;<br>Shore, BM                                              | 2015 | Teaching and<br>Teacher<br>Education             | deficit             | cognitive     | both       |
| The nature and development of<br>interaction among<br>components of pedagogical<br>content knowledge in<br>practicum                                                                                                     | Aydin, S; Demirdogen,<br>B; Akin, FN;<br>Uzuntiryaki-<br>Kondakci, E; Tarkin, A | 2015 | Teaching and<br>Teacher<br>Education             | deficit             | cognitive     | secondary  |
| Studying teacher noticing:<br>Examining the relationship<br>among pre-service science<br>teachers' ability to attend,<br>analyse and respond to<br>student thinking                                                      | Barnhart, T; van Es, E                                                          | 2015 | Teaching and<br>Teacher<br>Education             | deficit             | cognitive     | secondary  |
| Exploring the Impact of<br>TeachME (TM) Lab Virtual<br>Classroom Teaching<br>Simulation on Early<br>Childhood Education Majors'<br>Self-Efficacy Beliefs                                                                 | Bautista, NU; Boone, WJ                                                         | 2015 | Journal of<br>Science<br>Teacher<br>Education    | deficit             | cognitive     | elementary |
| Student Teachers' Approaches<br>to Teaching Biological<br>Evolution                                                                                                                                                      | Borgerding, LA; Klein,<br>VA; Ghosh, R; Eibel, A                                | 2015 | Journal of<br>Science<br>Teacher<br>Education    | asset               | sociocultural | secondary  |

| able 5. (Continued).                                                                                                                                                |                                                        |      |                                                     |                                |                            |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|-----------------------------------------------------|--------------------------------|----------------------------|----------------|
| Title                                                                                                                                                               | Authors                                                | Year | Journal                                             | Deficit<br>or Asset<br>Framing | Theoretical<br>Perspective | Grade<br>Level |
| Learning to Teach Elementary<br>Science Through Iterative<br>Cycles of Enactment in<br>Culturally and Linguistically<br>Diverse Contexts                            | Bottoms, SI;<br>Ciechanowski, KM;<br>Hartman, B        | 2015 | Journal of<br>Science<br>Teacher<br>Education       | asset                          | sociocultural              | elementary     |
| Developing Preservice<br>Teachers' Knowledge of<br>Science Teaching Through<br>Video Clubs                                                                          | Johnson, HJ; Cotterman,<br>ME                          | 2015 | Journal of<br>Science<br>Teacher<br>Education       | asset                          | sociocultural              | secondary      |
| Preservice Teacher Agency<br>Concerning Education for<br>Sustainability (EfS):<br>A Discursive Psychological<br>Approach                                            | Martin, J; Carter, L                                   | 2015 | Journal of<br>Research<br>in Science<br>Teaching    | asset                          | sociocultural              | elementary     |
| Prompting Reflections for<br>Integrating Self-Regulation<br>into Teacher Technology<br>Education                                                                    | Michalsky, T; Kramarski,<br>B                          | 2015 | Teachers<br>College<br>Record                       | deficit                        | cognitive                  | secondary      |
| Promoting Prospective<br>Elementary Teachers'<br>Learning to Use Formative<br>Assessment for Life Science<br>Instruction                                            | Sabel, JL; Forbes, CT;<br>Zangori, L                   | 2015 | Journal of<br>Science<br>Teacher<br>Education       | deficit                        | cognitive                  | elementary     |
| Discovering Plate Boundaries in<br>Data-integrated<br>Environments: Preservice<br>Teachers' Conceptualisation<br>and Implementation of<br>Scientific Practices      | Sezen-Barrie, A; Moore,<br>J; Roig, CE                 | 2015 | International<br>Journal of<br>Science<br>Education | asset                          | sociocultural              | secondary      |
| Problems Without Ceilings:<br>How Mentors and Novices<br>Frame and Work on<br>Problems-of-Practice                                                                  | Thompson, J; Hagenah,<br>S; Lohwasser, K;<br>Laxton, K | 2015 | Journal of<br>Teacher<br>Education                  | asset                          | sociocultural              | secondary      |
| Influence of an Intensive, Field-<br>Based Life Science Course on<br>Preservice Teachers' Self-<br>Efficacy for Environmental<br>Science Teaching                   | Trauth-Nare, A                                         | 2015 | Journal of<br>Science<br>Teacher<br>Education       | deficit                        | cognitive                  | elementary     |
| Outcomes of nature of science<br>instruction along a context<br>continuum: preservice<br>secondary science teachers'<br>conceptions and<br>instructional intentions | Bell, RL; Mulvey, BK;<br>Maeng, JL                     | 2016 | International<br>Journal of<br>Science<br>Education | deficit                        | cognitive                  | secondary      |
| Using tools to promote novice<br>teacher noticing of science<br>teaching practices in post-<br>rehearsal discussions                                                | Benedict-Chambers, A                                   | 2016 | Teaching and<br>Teacher<br>Education                | asset                          | sociocultural              | elementary     |
| Preservice Elementary Teachers'<br>Instructional Practices and<br>the Teaching Science as<br>Argument Framework                                                     | Boyer, E.                                              | 2016 | Science &<br>Education                              | asset                          | sociocultural              | elementary     |
| Interaction Between Science<br>Teaching Orientation and<br>Pedagogical Content<br>Knowledge Components                                                              | Demirdogen, B                                          | 2016 | Journal of<br>Science<br>Teacher<br>Education       | deficit                        | cognitive                  | secondary      |

|                                 |                            |      |                          | Deficit  |               |            |
|---------------------------------|----------------------------|------|--------------------------|----------|---------------|------------|
|                                 |                            |      |                          | or Asset | Theoretical   | Grade      |
| Title                           | Authors                    | Year | Journal                  | Framing  | Perspective   | Level      |
| Development and Nature of       | Demirdöğen, B;             | 2016 | Research in              | deficit  | cognitive     | secondary  |
| Preservice Chemistry            | Hanuscin, DL.;             |      | Science                  |          | 5             |            |
| Teachers' Pedagogical           | Uzuntiryaki-               |      | Education                |          |               |            |
| Content Knowledge for           | Kondakci, E;               |      |                          |          |               |            |
| Nature of Science               | Köseoğlu, F                |      |                          |          |               |            |
| The Principle-Practical         | Gunckel, KL; Wood, MB      | 2016 | Science                  | asset    | sociocultural | elementary |
| Discourse Edge: Elementary      |                            |      | Education                |          |               |            |
| Preservice and Mentor           |                            |      |                          |          |               |            |
| Teachers Working Together       |                            |      |                          |          |               |            |
| on Colearning Tasks             |                            |      |                          |          |               |            |
| Tools for Reflection: Video-    | Hawkins, S; Park Rogers,   | 2016 | Journal of               | asset    | sociocultural | elementary |
| Based Reflection Within         | M                          |      | Science                  |          |               |            |
| a Preservice Community of       |                            |      | Teacher                  |          |               |            |
| The lice of Lesson Study        | lublor MV                  | 2016 | Education                | doficit  | cognitivo     | alamantany |
| Combined with Content           | Jumer, MV                  | 2010 | Science                  | dencit   | cognitive     | elementary |
| Pepresentation in the           |                            |      | Togchar                  |          |               |            |
| Planning of Physics Lessons     |                            |      | Education                |          |               |            |
| During Field Practice to        |                            |      | Luucution                |          |               |            |
| Develop Pedagogical             |                            |      |                          |          |               |            |
| Content Knowledge               |                            |      |                          |          |               |            |
| Preservice Science Teachers'    | Kind, V                    | 2016 | Science                  | deficit  | cognitive     | secondary  |
| Science Teaching                |                            |      | Education                |          | 5             |            |
| Orientations and Beliefs        |                            |      |                          |          |               |            |
| About Science                   |                            |      |                          |          |               |            |
| Reasoning About Race and        | Larkin, DB; Maloney, T;    | 2016 | Cognition                | asset    | sociocultural | secondary  |
| Pedagogy in Two Preservice      | Perry-Ryder, GM            |      | and                      |          |               |            |
| Science Teachers: A Critical    |                            |      | Instruction              |          |               |            |
| Race Theory Analysis            |                            |      |                          |          |               |            |
| Preservice Elementary Teachers' | Menon, D; Sadler, TD       | 2016 | Journal of               | deficit  | cognitive     | elementary |
| Science Self-Efficacy Beliefs   |                            |      | Science                  |          |               |            |
| and Science Content             |                            |      | Teacher                  |          |               |            |
| Changing Procervice Science     | Marci C. Schwartz PS       | 2016 | Education<br>Posoarch in | doficit  | cognitivo     | both       |
| Toachars' Views of Nature of    | Mesci, G, Scriwartz, NS    | 2010 | Science                  | uencit   | cognitive     | DOLLI      |
| Science: Why Some               |                            |      | Education                |          |               |            |
| Conceptions May be More         |                            |      | Luucution                |          |               |            |
| Easily Altered than Others      |                            |      |                          |          |               |            |
| Preservice Teachers'            | Paulick, I: Großschedl, J: | 2016 | Journal of               | deficit  | coanitive     | secondarv  |
| Professional Knowledge and      | Harms, U; Möller, J        |      | Teacher                  |          | 5             | ,          |
| Its Relation to Academic Self-  |                            |      | Education                |          |               |            |
| Concept                         |                            |      |                          |          |               |            |
| Supporting Reform-Oriented      | Richmond, G.; Parker,      | 2016 | Journal of               | deficit  | cognitive     | secondary  |
| Secondary Science Teaching      | JM; Kaldaras, L            |      | Science                  |          |               |            |
| Through the Use of              |                            |      | Teacher                  |          |               |            |
| a Framework to Analyse          |                            |      | Education                |          |               |            |
| Construction of Scientific      |                            |      |                          |          |               |            |
| Explanations                    |                            | 2016 |                          |          |               |            |
| Elementary teachers' use of     | Sabel, JL; Forbes, CI;     | 2016 | International            | deficit  | cognitive     | elementary |
| content knowledge to            | Flynn, L                   |      | Journal of               |          |               |            |
| in the life sciences            |                            |      | Education                |          |               |            |
| They might know a lot of things | Tolbert S: Knov C          | 2016 | International            | accet    | sociocultural | elementary |
| that I don't know'.             | TOIDEIL, J, KIIOA, C       | 2010 | lournal of               | asset    | sociocultural | elementary |
| investigating differences in    |                            |      | Science                  |          |               |            |
| preservice teachers' ideas      |                            |      | Education                |          |               |            |
| about contextualising           |                            |      |                          |          |               |            |
| science instruction in          |                            |      |                          |          |               |            |
| multilingual classrooms         |                            |      |                          |          |               |            |

| Tuble 5. (continued).                                                                                                                                                     |                                           |      |                                                     |                     |               |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|-----------------------------------------------------|---------------------|---------------|------------|
|                                                                                                                                                                           |                                           |      |                                                     | Deficit<br>or Asset | Theoretical   | Grade      |
| Title                                                                                                                                                                     | Authors                                   | Year | Journal                                             | Framing             | Perspective   | Level      |
| Supporting children to<br>construct evidence-based<br>claims in science: Individual<br>learning trajectories in<br>a practice-based programme                             | Arias, AM; Davis, EA                      | 2017 | Teaching and<br>Teacher<br>Education                | asset               | sociocultural | elementary |
| Developing Preservice<br>Secondary Science Teachers'<br>Pedagogical Content<br>Knowledge Through Subject<br>Area Methods Courses:<br>A Content Analysis                   | Bailie, AL                                | 2017 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | secondary  |
| Influences on the Development<br>of Inquiry-Based Practices<br>Among Preservice Teachers                                                                                  | Cian, H; Dsouza, N;<br>Lysons, R; Cook, M | 2017 | Journal of<br>Science<br>Teacher<br>Education       | asset               | sociocultural | secondary  |
| A longitudinal investigation of<br>the science teaching efficacy<br>beliefs and science<br>experiences of a cohort of<br>preservice elementary<br>teachers                | Deehan, J; Danaia, L;<br>McKinnon, DH     | 2017 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | elementary |
| Developing Elementary<br>Preservice Teacher Subject<br>Matter Knowledge Through<br>the Use of Educative Science<br>Curriculum Materials                                   | Donna, JD; Hick, SR                       | 2017 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | elementary |
| Wonder as a tool to engage<br>preservice elementary<br>teachers in science learning<br>and teaching                                                                       | Gilbert, A; Byers, CC                     | 2017 | Science<br>Education                                | asset               | sociocultural | elementary |
| Linking practice to theory in<br>teacher education: A growth<br>in cognitive structures                                                                                   | Hennissen, P; Beckers,<br>H; Moerkerke, G | 2017 | Teaching and<br>Teacher<br>Education                | deficit             | cognitive     | elementary |
| The Use of Culturally<br>Responsive Teaching<br>Strategies Among Latina/o<br>Student Teaching Interns<br>During Science and<br>Mathematics Instruction of<br>CLD Students | Hernandez, C; Shroyer,<br>MG              | 2017 | Journal of<br>Science<br>Teacher<br>Education       | asset               | sociocultural | secondary  |
| Assessment of Understanding:<br>Student Teachers'<br>Preparation, Implementation<br>and Reflection of a Lesson<br>Plan for Science                                        | Juhler, MV                                | 2017 | Research in<br>Science<br>Education                 | deficit             | cognitive     | secondary  |
| Preservice Teachers' Learning<br>to Plan Intellectually<br>Challenging Tasks                                                                                              | Kang, H                                   | 2017 | Journal of<br>Teacher<br>Education                  | asset               | sociocultural | secondary  |
| Student Teachers' Perspectives<br>on Chemistry Education in<br>South Africa and Finland                                                                                   | Keinonen, T; de Jager, T                  | 2017 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | secondary  |
| Exhibitions and Beyond: The<br>Influence of an Optional<br>Course on Student Teachers'<br>Perceptions and Future<br>Usage of Natural History<br>Museums                   | Kreuzer, P; Dreesmann,<br>D               | 2017 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | secondary  |

| Tide                                                                                                                                                          | Andhana                                                                  | Maan | La como a l                                         | Deficit<br>or Asset | Theoretical   | Grade      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|-----------------------------------------------------|---------------------|---------------|------------|
| The                                                                                                                                                           | Authors                                                                  | rear | Journal                                             | Framing             | Perspective   | Level      |
| Planning for the Elicitation of<br>Students' Ideas: A Lesson<br>Study Approach With<br>Preservice Science Teachers                                            | Larkin, D                                                                | 2017 | Journal of<br>Science<br>Teacher<br>Education       | asset               | sociocultural | secondary  |
| Capturing the Transformation<br>and Dynamic Nature of an<br>Elementary Teacher<br>Candidate's Identity<br>Development as a Teacher of<br>Science              | Naidoo, K                                                                | 2017 | Research in<br>Science<br>Education                 | asset               | sociocultural | elementary |
| Preservice Science Teachers'<br>Epistemological Beliefs and<br>Informal Reasoning<br>Regarding Socioscientific<br>Issues                                      | Ozturk, N; Yilmaz-<br>Tuzun, O                                           | 2017 | Research in<br>Science<br>Education                 | deficit             | cognitive     | elementary |
| What Are the Effects of Science<br>Lesson Planning in Peers?-<br>Analysis of Attitudes and<br>Knowledge Based on an<br>Actor-Partner<br>Interdependence Model | Smit, R; Rietz, F; Kreis, A                                              | 2017 | Research in<br>Science<br>Education                 | deficit             | cognitive     | secondary  |
| Improving preservice chemistry<br>teachers' content knowledge<br>through intervention<br>activities                                                           | Wheeldon, R                                                              | 2017 | International<br>Journal of<br>Science<br>Education | deficit             | cognitive     | secondary  |
| Using the Practice of Modelling<br>to Support Preservice<br>Teachers' Reflection on the<br>Process of Teaching and<br>Learning                                | Zangori, L; Friedrichsen,<br>PJ; Wulff, E; Womack,<br>AJ                 | 2017 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | both       |
| Dialogic processes that enable<br>student teachers' learning<br>about pupil learning in<br>mentoring conversations in<br>a Lesson Study field practice        | Bjuland, R; Helgevold, N                                                 | 2018 | Teaching and<br>Teacher<br>Education                | asset               | sociocultural | elementary |
| Preservice science teachers'<br>concerns and approaches for<br>teaching socioscientific and<br>controversial issues                                           | Borgerding, LA;<br>Dagistan, M                                           | 2018 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | secondary  |
| Student teachers' prior<br>knowledge as prerequisite to<br>learn how to assess pupils'<br>learning strategies                                                 | Glogger-Frey, I;<br>Deutscher, M; Renkl,<br>A                            | 2018 | Teaching and<br>Teacher<br>Education                | deficit             | cognitive     | secondary  |
| Eliciting, Identifying,<br>Interpreting, and<br>Responding to Students'<br>Ideas: Teacher Candidates'<br>Growth in Formative<br>Assessment Practices          | Gotwals, AW;<br>Birmimngham, D                                           | 2018 | Research in<br>Science<br>Education                 | asset               | sociocultural | secondary  |
| Improving the preparation of<br>novice secondary science<br>teachers for English learners:<br>A proof of concept study                                        | Lyon, EG; Stoddart, T;<br>Bunch, GC; Tolbert, S;<br>Salinas, I; Solis, J | 2018 | Science<br>Education                                | asset               | sociocultural | secondary  |
| Preservice and Inservice<br>Teachers' Ideas of<br>Multiculturalism:<br>Explorations Across Two<br>Science Methods Courses in<br>Two Different Contexts        | Mensah, FM; Brown, JC;<br>Titu, P; Rozowa, P;<br>Sivaraj, R; Heydari, R  | 2018 | Journal of<br>Science<br>Teacher<br>Education       | deficit             | cognitive     | elementary |

#### Deficit or Asset Theoretical Grade Title Authors Year Journal Framing Perspective Level Whiteness as Property in Mensah, FM; Jackson, I 2018 Teachers asset sociocultural elementary Science Teacher Education College Record Preservice Science Teachers' Namdar, B; Kucuk, M 2018 Journal of deficit cognitive secondary Practices of Critiquing and Science **Revising 5E Lesson Plans** Teacher Education Preservice teachers' self-Norris, CM; Morris, JE; 2018 International deficit cognitive elementary efficacy to teach primary Lummis, GW Journal of science based on 'science Science learner' typology Education It's 1000 Degrees in Here When Stroupe, D; Gotwals, AW 2018 Journal of asset sociocultural secondary I Teach: Providing Preservice Teacher Teachers with an Extended Education Opportunity to Approximate Ambitious Instruction Student Teachers' Images of Subramaniam, K: Asim, 2018 Journal of sociocultural Elementary asset Science Instruction in S; Lee, EY; Koo, Y Science Informal Settings: A Focus on Teacher Field Trip Pedagogy Education Persistence of the two-worlds Braaten, M 2019 Science sociocultural secondary asset pitfall: Learning to teach Education within and across settings Explanations in STEM Areas: An Cabello, VM; Real, C; 2019 Research in asset sociocultural secondary Analysis of Representations Impedovo, MA Science Through Language in Education **Teacher Education** A Long-Term Investigation of 2019 Journal of Deehan, J; McKinnon, deficit cognitive elementary the Science Teaching Efficacy DH; Danaia, L Science Beliefs of Multiple Cohorts of Teacher Preservice Elementary Education Teachers A Qualitative Case Study of Heineke, AJ; Smetana, L; 2019 Journal of asset sociocultural secondary Field-Based Teacher Sanei, JC Science Education: One Candidate's Teacher **Evolving Expertise of Science** Education Teaching for Emergent Bilinguals Preservice Science Teachers' Kadstrom, M; Hamza, K 2019 Journal of sociocultural secondary asset **Opportunities for Learning** Science Through Reflection When Teacher Planning a Microteaching Education Unit Assessing Science Teaching Marzabal, A; Merino, C; 2019 Research in deficit cognitive secondary Explanations in Initial Moreira, P; Delgado, Science Teacher Education: How Is Education This Teaching Practice **Transferred Across Different Chemistry Topics?** Capturing student teachers' Nilsson, P; Karlsson, G 2019 International deficit cognitive secondary pedagogical content Journal of knowledge (PCK) using Science CoRes and digital technology Education Elementary teachers' science Nixon, RS; Smith, LK; 2019 Journal of deficit cognitive elementary subject matter knowledge Sudweeks, RR Research across the teacher career in Science cycle Teaching

#### Table 5. (Continued).

| Title                                                                                                                                                                                                                       | Authors                                                                                                 | Year | Journal                                          | Deficit<br>or Asset<br>Framing | Theoretical<br>Perspective | Grade<br>Level |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|--------------------------------------------------|--------------------------------|----------------------------|----------------|
| A Role-Play-Based Tutor<br>Training in Preservice<br>Teacher Education for<br>Developing Procedural<br>Pedagogical Content<br>Knowledge by Optimising<br>Tutor-Student Interactions in<br>the Context of an Outreach<br>Lab | Scharfenberg, FJ;<br>Bogner, FX                                                                         | 2019 | Journal of<br>Science<br>Teacher<br>Education    | deficit                        | cognitive                  | secondary      |
| The Promises and Realities of<br>Implementing a Coteaching<br>Model of Student Teaching                                                                                                                                     | Soslau, E; Gallo-Fox, J;<br>Scantlebury, K                                                              | 2019 | Journal of<br>Teacher<br>Education               | asset                          | sociocultural              | both           |
| Framing, Adapting, and<br>Applying: Learning to<br>Contextualise Science<br>Activity in Multilingual<br>Science Classrooms                                                                                                  | Tolbert, S; Knox, C;<br>Salinas, I                                                                      | 2019 | Research in<br>Science<br>Education              | asset                          | sociocultural              | secondary      |
| The development of student-<br>teachers' professional<br>identity while team-teaching<br>science classes using<br>a project-based learning<br>approach: A multi-level<br>analysis                                           | Tsybulsky, D; Muchnik-<br>Rozanov, Y                                                                    | 2019 | Teaching and<br>Teacher<br>Education             | asset                          | sociocultural              | elementary     |
| Exploring the Design of<br>Scaffolding Pedagogical<br>Instruction for Elementary<br>Preservice Teacher Education                                                                                                            | Wang, JL; Sneed, S                                                                                      | 2019 | Journal of<br>Science<br>Teacher<br>Fducation    | deficit                        | cognitive                  | elementary     |
| Analysing the role of<br>metacognitive awareness in<br>preservice chemistry<br>teachers' understanding of<br>gas behaviour in<br>a multirepresentational<br>instruction setting                                             | Adadan, E                                                                                               | 2020 | Journal of<br>Research<br>in Science<br>Teaching | deficit                        | cognitive                  | secondary      |
| Preservice Secondary Science<br>Teachers' Implementation of<br>an NGSS Practice: Using<br>Mathematics and<br>Computational Thinking                                                                                         | Aminger, W; Hough, S;<br>Roberts, SA; Meier, V;<br>Spina, AD; Pajela, H;<br>McLean, M; Bianchini,<br>JA | 2020 | Journal of<br>Science<br>Teacher<br>Education    | deficit                        | cognitive                  | secondary      |
| Negotiating Dissonant<br>Identities as a Teacher of<br>Science During Student<br>Teaching                                                                                                                                   | Canipe, MM                                                                                              | 2020 | Journal of<br>Science<br>Teacher<br>Education    | asset                          | sociocultural              | elementary     |
| Exploring Australian Preservice<br>Primary Teachers' Attitudes<br>Towards Teaching Science<br>Using the Dimensions of<br>Attitude towards Science<br>(DAS)                                                                  | McDonald, CV; Klieve, H;<br>Kanasa, H                                                                   | 2020 | Research in<br>Science<br>Education              | deficit                        | cognitive                  | elementary     |
| Preservice secondary science<br>teachers' understanding of<br>academic language: Moving<br>beyond just the vocabulary                                                                                                       | Meier, V; Aminger, W;<br>McLean, M;<br>Carpenter, SL; Moon,<br>S; Hough, S;<br>Bianchini, JA            | 2020 | Science<br>Education                             | deficit                        | cognitive                  | secondary      |

|                                                                                                                                                                                                       |                                           |      |                                                  | Deficit  |               |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|--------------------------------------------------|----------|---------------|------------|
| Title                                                                                                                                                                                                 | Authous                                   | Veer | امسما                                            | or Asset | Theoretical   | Grade      |
| The                                                                                                                                                                                                   | Authors                                   | rear | Journal                                          | Framing  | Perspective   | Level      |
| Influence of the Sources of<br>Science Teaching Self-<br>Efficacy in Preservice<br>Elementary Teachers'<br>Identity Development                                                                       | Menon, D                                  | 2020 | Journal of<br>Science<br>Teacher<br>Education    | deficit  | cognitive     | elementary |
| Enabling Factors of Preservice<br>Science Teachers'<br>Pedagogical Content<br>Knowledge for Nature of<br>Science and Nature of<br>Scientific Inquiry                                                  | Mesci, G; Schwartz, RS;<br>Pleasants, BAS | 2020 | Science &<br>Education                           | deficit  | cognitive     | secondary  |
| Simulations as practice-based<br>spaces to support<br>elementary teachers in<br>learning how to facilitate<br>argumentation-focused<br>science discussions                                            | Mikeska, JN; Howell, H                    | 2020 | Journal of<br>Research<br>in Science<br>Teaching | asset    | sociocultural | elementary |
| Exploring Preservice Teachers'<br>Beliefs about Effective<br>Science Teaching through<br>Their Collaborative Oral<br>Reflections                                                                      | Min, M; Akerson, V;<br>Aydeniz, F         | 2020 | Journal of<br>Science<br>Teacher<br>Education    | deficit  | cognitive     | elementary |
| Developing Secondary Pre-<br>Service Science Teachers'<br>Instructional Planning<br>Abilities for Language- and<br>Literacy-Integrated Science<br>Instruction in Linguistically<br>Diverse Classrooms | Rutt, AA; Mumba, FM                       | 2020 | Journal of<br>Science<br>Teacher<br>Education    | deficit  | cognitive     | secondary  |
| Professional Knowledge for<br>Teaching in Student<br>Teachers' Conversations<br>about Field Experiences                                                                                               | Sjoberg, M; Nyberg, E                     | 2020 | Journal of<br>Science<br>Teacher<br>Education    | deficit  | cognitive     | secondary  |
| Learning to Plan During the<br>Clinical Experience: How<br>Visions of Teaching Influence<br>Novices' Opportunities to<br>Practice                                                                     | Windschitl, M;<br>Lohwasser, K; Tasker, T | 2020 | Journal of<br>Teacher<br>Education               | asset    | sociocultural | secondary  |

This paper has six features that align with cognitive and deficit perspectives of PST knowledge:

Feature 1: All units of analysis exist inside a PST's head (knowledge).

*Feature 2:* Data collection and analysis focused on comparing the PSTs' knowledge and answers to predetermined outcomes established by the researchers.

*Feature 3:* The authors claim there is a 'prerequisite amount' of knowledge that PSTs must acquire prior to becoming successful.

*Feature 4:* The authors link PSTs' acquisition of the 'correct' knowledge established by the researchers to better teaching and learning outcomes.

*Feature 5:* The authors make claims about PST learning in terms of whether they met predetermined criteria about knowledge set by researchers.

*Feature 6:* The researchers call for new or modified opportunities for PSTs to acquire more knowledge in order to meet the predetermined standard.

#### Cognitive asset example

An example of a cognitive asset paper is Avraamidou and Zembal-Saul (2010) from the *Journal of Research in Science Teaching* titled '[I]n search of well-started beginning science teachers: Insights from two first-year elementary teachers.' From the paper's abstract, the authors state that 'The purpose of this qualitative case study was to explore what aspects of two first-year elementary teachers' practices were most consistent with an inquiry-based approach, what PCK served as a mechanism for facilitating these practices, and what experiences have mediated the nature and development of these teachers' PCK' (p. 661). This paper has six features that align with cognitive and asset perspectives of PST knowledge:

**Feature 1:** The authors attempt to ascertain PST knowledge by asking participants which components of instruction led to their improved understandings, rather than as compared to a standard set by the researchers.

*Feature 2:* The authors explicitly do not attempt to disentangle PST beliefs and knowledge.

*Feature 3:* The authors' goals are not to assist PSTs in constructing all the knowledge they will need, but are attempting to provide knowledge to PSTs to become well-started beginners.

*Feature 5:* The results of the study are framed in terms of what the PSTs accomplished or knew, rather than what they unable to accomplish or know.

**Feature 6:** The implications of the study include the need for the design of universitybased courses and interventions by which teacher preparation and professional development programmes support teachers in developing PCK for scientific inquiry and enacting instructional practices that are congruent with reform initiatives.

#### Sociocultural asset example

An example of a sociocultural asset paper is Arias and Davis (2017) from the journal *Teaching* and *Teacher Education* titled 'Supporting children to construct evidence-based claims in science: Individual learning trajectories in a practice-based program.' From the paper's abstract, the authors state that '[t]his study examines four PSTs' learning pathways for one science teaching practice, *supporting students to construct evidence-based claims* [italics in original], during a two-year practice-based teacher education programme. Analyses uncovered variation and similarities across and within the teachers' pathways' (p. 204). This paper has six features that align with sociocultural and asset perspectives of PST knowledge:

*Feature 1:* The authors constructed a model of teacher practice aimed at supporting elementary children to construct evidence-based claims in science.

*Feature 2:* The authors asked questions about *how* PSTs' 'knowledge and practice' changed over time in terms contextual mechanisms and opportunities.

*Feature 3:* The authors describe variation and similarities across and within the teachers' learning pathways.

*Feature 4:* The authors note how participants' experiences and histories impacted their learning.

*Feature 5:* The authors' methodology linked data collection to theory in terms of observing how knowledge was embedded in practices over time.

*Feature 6:* The implications of the study focus on how teacher educators must provide better opportunities for PSTs to learn through participation in practices.

Once we identified and described each of the example papers, they became reference points to use when we did not initially agree on the classification of other articles.

#### Phase 3: Synthesising across categories

After identifying the empirical articles for analysis and completing the coding, we began looking for patterns related to our research question by calculating descriptive statistics. Specifically, we looked at the percentage of published studies over the ten-year period in each of the main categories: cognitive deficit, cognitive asset, and sociocultural asset. We also examined these data longitudinally to identify patterns over time. Finally, we recorded the number of studies focused on elementary, secondary, or both levels and the percentage of studies at each level in each of the four main categories.

#### Limitations

Any process to examine a large body of literature has limitations, and we identify three for this paper. First, our search and selection process for empirical, peer-reviewed articles necessarily did not include studies from conference proceedings, books, and theses/ dissertations. Second, by limiting our search to a single database (Web of Science) and only the high impact journals found in Table 1, we potentially excluded articles that may have been relevant to the analysis. Third, our exclusion of non-English published articles might have excluded relevant articles. We contend, however, that the selection of studies generated is sufficient as our goal was not to provide an exhaustive literature review but rather to uncover patterns of deficit and asset framing in studies of science PSTs given two families of learning theories across the literature over the past twelve years (2008–2020).

#### Results

In this section, we discuss four themes that arose from our analysis of the 146 empirical articles on science PSTs' knowledge and learning between 2008 and 2020. Note that these themes are not a meta-analysis of the findings from the empirical articles; rather, we examined how learning theories (cognitive and sociocultural) align with perspectives of PST knowledge (deficit and asset).

#### Pattern between knowledge perspectives and theoretical perspectives

We began by examining the data for general patterns between the knowledge perspectives (deficit and asset) and theoretical perspectives (cognitive and sociocultural). When examining our coding categories for each article (see Table 5) we found that the majority of studies coded as cognitive were also coded as having a deficit knowledge perspective (87 of 93 studies) with a small number of cognitive studies (6 of 93) coded as asset-framed (see Table 7). For studies coded as sociocultural, all studies (53) were coded as having an asset knowledge perspective with none coded as deficit-framed. Therefore, we found a pattern of alignment between cognitive studies framed from a deficit perspective and sociocultural studies framed from an asset perspective (see Table 6 for a breakdown of articles coded by journal source).

#### Table 6. Article selection by journal.

|                                       | Cognitive<br>deficit | Cognitive<br>asset | Sociocultural deficit | Sociocultural<br>asset | Total |
|---------------------------------------|----------------------|--------------------|-----------------------|------------------------|-------|
| Journal of Science Teacher Education  | 23                   | 0                  | 0                     | 11                     | 34    |
| Research in Science Education         | 19                   | 0                  | 0                     | 8                      | 27    |
| International Journal of Science      | 15                   | 3                  | 0                     | 4                      | 22    |
| Education                             |                      |                    |                       |                        |       |
| Science Education                     | 7                    | 1                  | 0                     | 9                      | 17    |
| Teaching and Teacher Education        | 7                    | 0                  | 0                     | 6                      | 13    |
| Journal of Research in Science        | 8                    | 1                  | 0                     | 5                      | 14    |
| Teaching                              |                      |                    |                       |                        |       |
| Journal of Teacher Education          | 2                    | 0                  | 0                     | 7                      | 9     |
| Science & Education                   | 3                    | 0                  | 0                     | 1                      | 4     |
| Teachers College Record               | 2                    | 0                  | 0                     | 1                      | 3     |
| Cognition and Instruction             | 0                    | 0                  | 0                     | 1                      | 1     |
| Cultural Studies of Science Education | 0                    | 0                  | 0                     | 0                      | 0     |
| Journal of the Learning Sciences      | 0                    | 0                  | 0                     | 0                      | 0     |

 Table 7. Comparison of learning theories and knowledge perspectives.

|         | Cognitive | Sociocultural |
|---------|-----------|---------------|
| Deficit | 87        | 0             |
| Asset   | 6         | 53            |

#### Perspective use in literature about science teacher preparation

Next, we looked across the studies to determine which perspectives were most frequently used over the twelve-year period (2008–2020) of the study. Overall, we found the cognitive deficit perspective was most frequently used in studies of science PST knowledge and learning. As shown in Table 8 and Figure 2, cognitive studies accounted for 64% and cognitive deficit studies 60% of the overall studies of PST knowledge and learning over the study period. For a more fine-grained analysis, we examined the data over time (Figure 3). Here we observed the frequent use of cognitive deficit coded studies continuing into the last year of literature we examined (2020). Overall, there has been a trend of gradual increase in sociocultural asset coded studies over the study period resulting in a majority of studies in the last full year of the study (2019). Studies from 2020 represent an incomplete record as the literature search was completed in October of that year.

#### Relative differences between studies of elementary and secondary levels

Finally, we examined the data for possible trends in studies across elementary and secondary teacher preparation contexts. As shown in Figure 4, we found that the majority

| utegory.              |    |         |
|-----------------------|----|---------|
| Perspective           | #  | % Total |
| Sociocultural asset   | 53 | 36%     |
| Sociocultural deficit | 0  | 0%      |
| Cognitive asset       | 6  | 4%      |
| Cognitive deficit     | 87 | 60%     |

 Table 8. Number of studies from each coding category.



Figure 2. Percentages of coding categories between 2008–2020.



Figure 3. Number of articles in coding categories across time.

of studies of secondary PSTs were coded as cognitive deficit (66%). Studies of elementary PSTs, however, drew upon different perspectives more evenly than studies of secondary PSTs. Interestingly, all studies coded as cognitive asset (six in total across the studies) focused on elementary PSTs.



Figure 4. Breakdown of framing codes by grade level.

#### **Emergence of a critical studies category**

While we bounded the focus of our analysis to studies from cognitive and sociocultural perspectives, we also noticed the emergence of critical perspectives on science PSTs' knowledge and learning. In general terms, critical theories unpack assumptions about the nature of knowledge and power, challenge existing forms of knowledge, and introduce new epistemologies (McLaren, 2003). In our analysis, we found two studies that were framed from a critical perspective and met all other criteria for inclusion. In the first,

26

Bottoms et al. (2017) examined 'how elementary teacher candidates experience Family Math and Science Nights with culturally and linguistically diverse children and families' (p. 1) from a culturally responsive teaching framework. In the second example, Milne (2009) utilised Foucault and feminist theories of power and knowledge to examine 'themes of surveillance, discipline structure, and criticality' (p. 758) in PSTs' self-assessments. We highlight these studies to both lament the lack of critical studies of PST knowledge and learning in the field, and to note that such crucial research will benefit the field as more scholars take up such a perspective.

#### Discussion

We attempt to characterise the larger pattern we found across the different empirical articles about PST learning between theoretical and knowledge perspectives in Figure 5. In each case, the model captures the relationship between the phenomenon of learning – the PST activities researchers investigated (e.g., teaching, lesson planning, university class-based tasks) – and the changes that were labelled as indicators of learning by researchers. In the work framed from sociocultural perspectives, the indicators of learning tended to focus on collecting direct evidence of the activities or practices, such as observations of teaching, artefacts from learning environment, or video or audio recordings of university classrooms. Studies framed from cognitive perspectives tended to uses measures of PST attributes identified as mediators or indicators of the ability to engage in activities or practices. Cognitive studies most commonly utilised the construct of PCK specifically, or knowledge and beliefs in a more general sense. Some studies measured knowledge



Figure 5. Deficit and asset models in different theoretical perspectives.

28 👄 R. GRAY ET AL.

constructs using an instrument that PSTs often completed at multiple timepoints. In other studies, researchers collected more observational data (e.g., video of teaching, samples of work) that was analysed as a source of inferential representation of knowledge and beliefs. Therefore, cognitive studies included a measure of some variable(s) that describes an individual attribute that was seen as a mediating PSTs' ability to carry out the instructional decisions and/or actions under investigation.

The models in Figure 5 use arrows to indicate a relationship implied by researchers when taking either an asset or deficit perspective on PSTs as learners. The directionality of the arrow expresses the researchers' perspectives on which of the two main components (the model or the phenomena) is primary, and thus assumed to be the benchmark. If data indicates a PST has a certain level of proficiency with a practice described by the researchers as not reaching the researchers' standard, this constitutes a deficit perspective. If the difference between performance and standard is interpreted as appropriate given the trajectory of the PSTs (e.g., well-started beginners) or as a deficiency in the learning support provided to PSTs, this constitutes an asset perspective. There is complexity here, as in studies that take an asset-based frame on learning the standard is not always explicitly stated, at least in part because of an assumption that the standard is not known a priori. However, when the phenomenon of PST learning is given priority, this was reflected in asset language being used to describe PSTs – for example, that they brought productive ideas about science teaching and learning with them or they developed productive teaching practices as part of their learning. When the researchers' model was treated as the benchmark, this was reflected in language that positioned the PSTs as having or missing something, or in terms of a potential deficit in knowledge or practice. Thus, while for both cognitive and sociocultural perspectives there was potential for both a deficit and asset version of how researchers portrayed their analysis and results, in practice there were no examples of socio-cultural studies that took a deficit perspective, so no model was included for this in Figure 5.

#### Conclusion

The study of science teachers' knowledge and learning, in particular the learning of PSTs in teacher education programmes, is a central focus of research in our field. We hope this literature review can help open the scholarly conversation about the kinds of knowledge we value with regard to PSTs, and also how best to investigate their learning. We conclude with four lingering questions and suggestions for future research.

First, we noticed the few cognitive asset studies all focused on elementary science PSTs. Why is such a perspective limited to elementary PSTs? Could elementary researchers frame studies around helping PSTs learn to teach children, while secondary researchers care more about whether PSTs know 'correct' science? We wonder if conversations across arbitrary boundaries of research might help teacher educators design better learning opportunities for all PSTs.

Second, we initially expected to notice an historical decline in cognitive papers given the 'practice turn' in education research that occurred at the dawn of the millennium (1999/2000). However, in literature about science PST learning and knowledge, cognitive deficit papers have dominated the literature over the last twelve years. Thus, we ask: Why are cognitive deficit studies still a primary means to frame research about PSTs' knowledge and learning? Is there a potential publishing bias that prioritises certain types of studies, such as those framed from a cognitive deficit perspective? Rather than perpetuate a pervasive deficit framing of people in which 'misconceptions' are treated as barriers to learning, we suggest that colleagues take an asset-based approach to framing PST knowledge, such as our example paper from Avraamidou and Zembal-Saul (2010), in which PSTs' ideas and experiences are treated as resources rather than incorrect notions in need of repair or replacement.

Third, we wonder what, if anything, research about PST knowledge domains can still provide our field that might help advance science teacher preparation. While the recognition and advocation of teacher knowledge was crucial to responding to calls for deprofessionalization in the 1980s, we worry that positioning learning to teach as successfully completing 'correct answers' on assessments creates a culture in which PSTs are perpetually positioned as deficit and outside the norm given how powerful researchers choose to frame them.

We also wonder who the atomisation of professional knowledge into more and more pieces (see Figure 1) serves, preservice teachers or researchers? For example, the research agendas around characterising PCK do not seem to have clarified or unified our collective understanding of how to better prepare teachers for the complex work of teaching, which we know to be grounded in histories and cultures of schools, as well as relational work between teachers and students. In fact, the continuing attempts to further 'clarify' the PCK construct through detailed description of new sub-constructs or super-constructs (such as Technological Pedagogical Content Knowledge; Mishra & Koehler, 2006) seem largely to be speaking to the esoteric agendas of those scholars, resulting in an increasingly labyrinthian echo chamber. Given emerging and overlapping crises of climate change, COVID, science communication, and the need to focus on equity, social justice, and anti-racism in teacher preparation programmes, we question whether the continual subdivision of PST knowledge domains is needed or useful. Perhaps, as Settlage (2013) noted, framing teacher preparation around PCK and other knowledge domains has been 'usefully wrong' (p. 11) in the sense that such literature has provided a foundation for examinations of teacher learning, but has also reached the limits of its usefulness as a research construct.

Fourth, and related to the questions above, we wonder about the future of PST knowledge and the daily work of teacher preparation. Looking across the literature for this review, we noticed that framing teacher preparation around knowledge domains alone, especially from a deficit perspective, does not result in substantive shifts in PST thinking or actions. Instead, such research begins to sound like a proverbial broken record, repeating the same theme – PSTs lack a particular knowledge domain and thus teacher preparation should focus more on that domain – without considering how to restructure pedagogies of teacher preparation to help PSTs. Rather than continue to blame PSTs for knowledge they have not yet developed (would we blame pre-K – high school students in similar ways?), teacher educators must take on the onus for providing opportunities for PSTs to shift their thinking and actions. To be blunt: Rather than succumbing to the siren call of publishing about knowledge that PSTs lack (Settlage, 2013) – which might seem easy and externalises responsibility for PST learning – we urge teacher educator

30 👄 R. GRAY ET AL.

colleagues to examine PST learning in relation to the opportunities that are provided, or denied, in the preparation programmes we design and enact. If PSTs do not develop the knowledge and practices that help students learn, blame and responsibility falls on us, the teacher educators, and not on novices who are desperately needed in classrooms and who look to us for guidance in learning to teach.

#### **Acknowledgments**

We thank Dr. Christina Schwarz for her helpful comments about how to describe learning theories.

#### **Notes on contributors**

*Ron Gray* is an Associate Professor of science education in the Center for Science Teaching and Learning at Northern Arizona University. His research aims to better understand how teachers learn to teach science in ambitious and equitable ways across their professional trajectories.

*Scott McDonald* is a Professor of science education at Pennsylvania State University. His research focuses on teacher learning around supporting epistemically authentic science investigations using models, simulations, and data visualizations.

*David Stroupe* is an Associate Professor of teacher education and science education at Michigan State University. His research focuses on how preservice and novice teachers learn to disrupt epistemic injustice through participation in practice-based teacher education.

#### ORCID

Ron Gray (b) http://orcid.org/0000-0002-0512-063X

#### References

- Abell, S. K. (2007). Research on science teacher knowledge. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Lawrence Erlbaum.
- Arias, A. M., & Davis, E. A. (2017). Supporting children to construct evidence-based claims in science: Individual learning trajectories in a practice-based program. *Teaching and Teacher Education*, 66, 204–218. doi:10.1016/j.tate.2017.04.011
- Avraamidou, L., & Zembal-Saul, C. (2010). In search of well-started beginning science teachers: Insights from two first-year elementary teachers. *Journal of Research in Science Teaching*, 47(6), 661–686. doi:10.1002/tea.20359
- Bottoms, S. I., Ciechanowski, K., Jones, K., De La Hoz, J., & Fonseca, A. L. (2017). Leveraging the community context of Family Math and Science Nights to develop culturally responsive teaching practices. *Teaching and Teacher Education*, 61, 1–15. doi:10.1016/j.tate.2016.09.006
- Bradbury, L. U., & Koballa, T. R., Jr. (2008). Borders to cross: Identifying sources of tension in mentorintern relationships. *Teaching and Teacher Education*, 24(8), 2132–2145. doi:10.1016/j. tate.2008.03.002
- Cáceres, M. J., Chamoso, J. M., & Azcárate, P. (2010). Analysis of the revisions that pre-service teachers of Mathematics make of their own project included in their learning portfolio. *Teaching and Teacher Education*, *26*(5), 1186–1195. doi:10.1016/j.tate.2010.01.003
- Carlsen, W. S. (1999). Domains of teacher knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (Vol. 6, pp. 133–146). Kluwer Academic Publishers.
- Cooper, H. (2010). Research synthesis and meta-analysis (4<sup>th</sup> ed.). Sage.

- Danish, J. A., & Gresalfi, M. (2018). Cognitive and sociocultural perspective on learning: Tensions and synergy in the learning sciences. In F. Fischer, C. E. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), *International handbook of the learning sciences* (pp. 34–43). Routledge.
- Davis, E. A., Petish, D., & Smithey, J. (2006). Challenges new science teachers face. *Review of Educational Research*, *76*(4), 607–651. doi:10.3102/00346543076004607
- Davis, L. P., & Museus, S. D. (2019). What is deficit thinking? An analysis of conceptualizations of deficit thinking and implications for scholarly research. *NCID Currents*, 1(1).
- Demirdöğen, B., Hanuscin, D. L., Uzuntiryaki-Kondakci, E., & Köseoğlu, F. (2016). Development and nature of preservice chemistry teachers' pedagogical content knowledge for nature of science. *Research in Science Education*, *46*(4), 575–612. doi:10.1007/s11165-015-9472-z
- Dillon, J., & Avraamidou, L. (2020). Towards a viable response to COVID-19 from the science education community. *Journal for Activist Science & Technology Education*, *11*(2), 1–6. doi:10.33137/jaste.v11i2.34531
- diSessa, A. A. (1993). Toward an epistemology of physics. *Cognition and Instruction*, 10(2–3), 105–225. doi:10.1080/07370008.1985.9649008
- Grossman, P., Hammerness, K., & McDonald, M. (2009). Redefining teaching, re-imagining teacher education. *Teachers and Teaching*, *15*(2), 273–289. doi:10.1080/13540600902875340
- Hutner, T. L., & Markman, A. B. (2017). Applying a goal-driven model of science teacher cognition to the resolution of two anomalies in research on the relationship between science teacher education and classroom practice. *Journal of Research in Science Teaching*, 54(6), 713–736. doi:10.1002/ tea.21383
- Lampert, M. (2010). Learning teaching in, from, and for practice: What do we mean?. *Journal of Teacher Education*, *61*(1–2), 21–34. doi:10.1177/0022487109347321
- Levy, B. L., Thomas, E. E., Drago, K., & Rex, L. A. (2013). Examining studies of inquiry-based learning in three fields of education: Sparking generative conversation. *Journal of Teacher Education*, 64(5), 387–408. doi:10.1177/0022487113496430
- López, F. (2017). Altering the Trajectory of the Self-Fulfilling Prophecy. *Journal of Teacher Education*, 68(2), 193–212. doi:10.1177/0022487116685751
- Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. J. Gess-Newsome & N. G. Lederman Eds., *Examining pedagogical content knowledge: The construct and its implications for science education*. (95–132). Kluwer. Meichtry
- McDonald, M., Bowman, M., & Brayko, K. (2013). Learning to see students: Opportunities to develop relational practices of teaching through community-based placements in teacher education. *Teachers College Record*, *115*(4), 1–35.
- McLaren, P. (2003). Critical pedagogy: A look at the major concept. In A. Darder, M. Baltodano, & R. D. Torres (Eds.), *The critical pedagogy reader* (pp. 69–96). Psychology Press.
- Mikeska, J. N., Anderson, C. W., & Schwarz, C. V. (2009). Principled reasoning about problems of practice. Science Education, 93(4), 678–686. doi:10.1002/sce.20312
- Milne, C. (2009). Assessing self-evaluation in a science methods course: Power, agency, authority and learning. *Teaching and Teacher Education*, 25(5), 758–766. doi:10.1016/j.tate.2008.11.008
- Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. *Teachers College Record*, *108*(6), 1017–1054. doi:10.1111/j.1467-9620.2006.00684.x
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Medicine*, *6*(7), e1000097. doi:10.1371/ journal.pmed.1000097
- National Research Council. (2007) . Taking science to school: Learning and teaching science in grades K-8. National Academies Press.
- Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. *Research in Science Education*, *38*(3), 261–284. doi:10.1007/s11165-007-9049-6
- Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences. Blackwell.

32 👄 R. GRAY ET AL.

- Scantlebury, K., Gallo-Fox, J., & Wassell, B. (2008). Coteaching as a model for preservice secondary science teacher education. *Teaching and Teacher Education*, 24(4), 967–981. doi:10.1016/j. tate.2007.10.008
- Settlage, J. (2013). On acknowledging PCK's shortcomings. *Journal of Science Teacher Education*, 24 (1), 1–12. doi:10.1007/s10972-012-9332-x
- Shulman, L. (1987). Knowledge and Teaching:Foundations of the New Reform. *Harvard Educational Review*, *57*(1), 1–22. doi:10.17763/haer.57.1.j463w79r56455411
- Treagust, D. F., Won, M., Petersen, J., & Wynne, G. (2015). Science teacher education in Australia: Initiatives and challenges to improve the quality of teaching. *Journal of Science Teacher Education*, 26(1), 81–98. doi:10.1007/s10972-014-9410-3
- Van Dijk, E. M., & Kattmann, U. (2007). A research model for the study of science teachers' PCK and improving teacher education. *Teaching and Teacher Education*, 23(6), 885–897. doi:10.1016/j. tate.2006.05.002
- Van Driel, J. H., Berry, A., & Meirink, J. (2014). Research on science teacher knowledge. In N. G. Lederman & S. K. Abell (Eds.), *Handbook of research on science education* (pp. 848–870). Routledge.