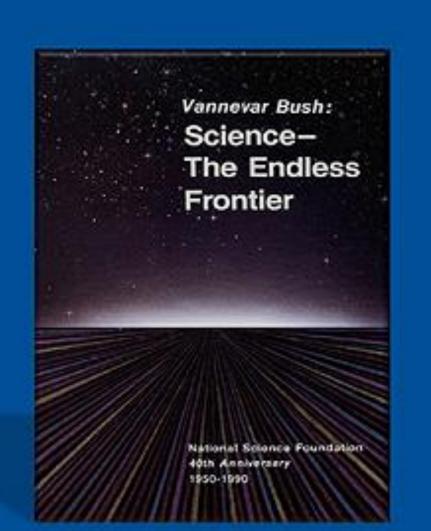
DRK-12 Research and Development: Disruptive innovations, evolutionary improvements ... or both?

2012 Discovery Research K-12 Principal Investigators Meeting

Joan Ferrini-Mundy Assistant Director, NSF Directorate for Education and Human Resources (EHR) June 14, 2012

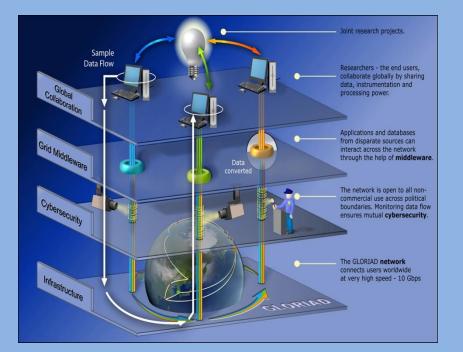


A few things to think about:

- 1. Science and NSF
- 2. Why does NSF fund education?
- 3. What's next?

1. SCIENCE AND NSF

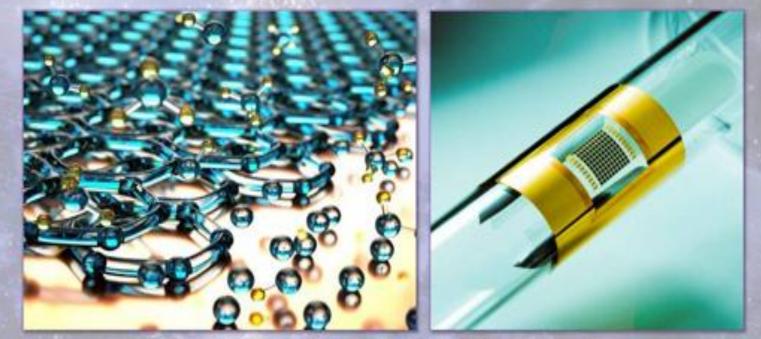
The NSF Mission:


To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense...

New Era of Science

Era of Observation (Theory, experiment, computation, "citizen science")

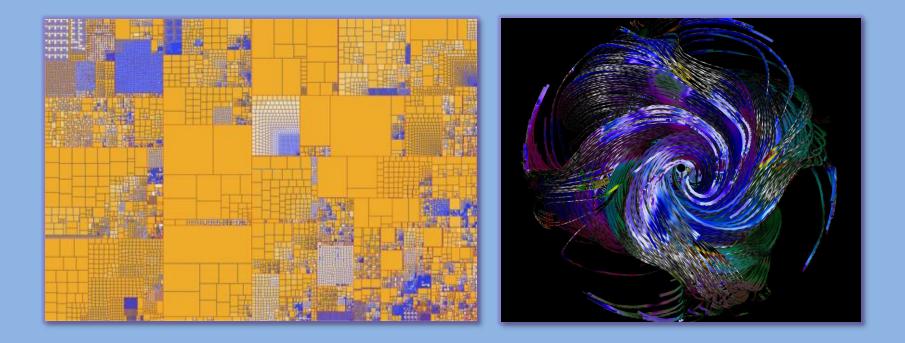
Era of Data and Communications


Science, Engineering, and Education for Sustainability (SEES)

Creating new knowledge for a clean energy economy and sustainable future

ENSF

Cyber-enabled Materials, Manufacturing, and Smart Systems (CEMMSS)


Creating smart systems that sense, respond and adapt to the environment

DRK-12 June 2012

BNSF

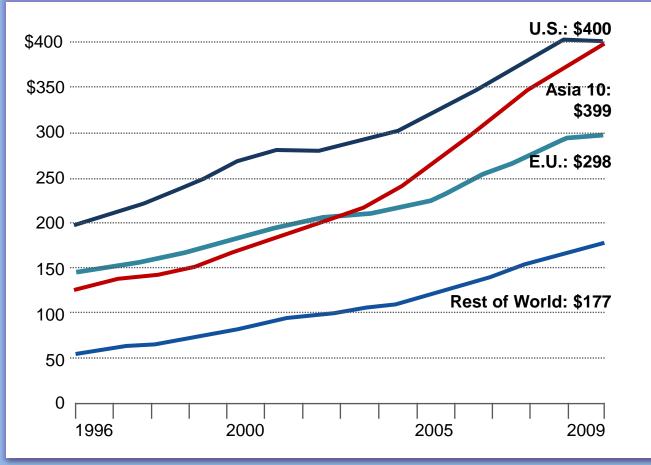
Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21)

Addressing grand challenges in computing, computational modeling and simulation, and big data

Scientists are:

- Collaborating across vastly different disciplines on compelling problems
- Inventing and using computational techniques and algorithms to deal with massive data sets
- Building and using infrastructure and instruments to gather new data
- Accessing more data than they can possibly analyze in a lifetime, using shared datasets
- Networking around the globe in orchestrated ways to solve specific problems
- Formulating new problems that could not have been approached without current technologies

Nathematics, Statistics, and the Data Delug NATHEMATICS AWARENESS MONTH

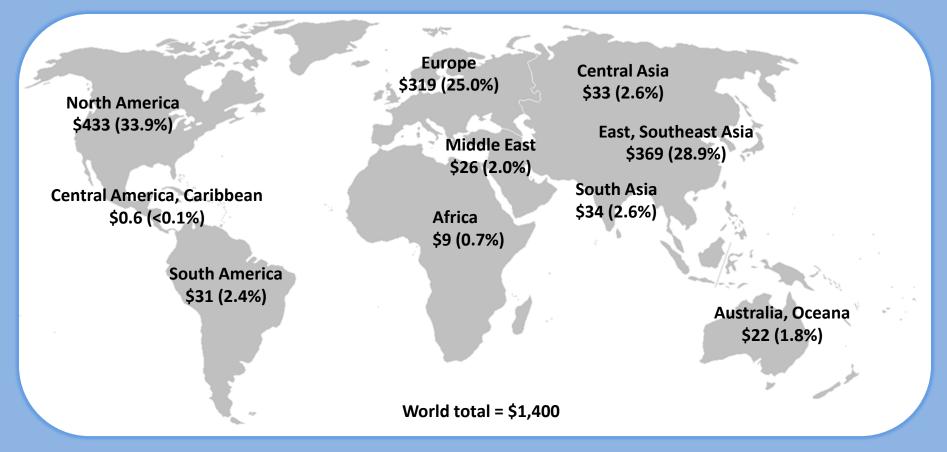

"The scientific community benefits from diversity. Innovation, creativity, and novel discoveries are accelerated by a diversity of ideas and perspectives. While the scientific method provides a crucible for testing and validating these ideas, a diverse research community with many perspectives affords a rich environment for new theories and hypotheses."

Schultz, P.W., et al. (2011). Patching the pipeline: Reducing educational disparities in the sciences through minority training programs. *Educational Evaluation and Policy Analysis*, 33 (1).

The Case for NSF Funding

Research-and-development expenditures,

In billions of U.S. dollars


The Asia 10: China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan and Thailand

BNSF

Global R&D Expenditures and Share of World Total by Region

(Billions of 2009 U.S. Purchasing-Power-Parity Dollars)

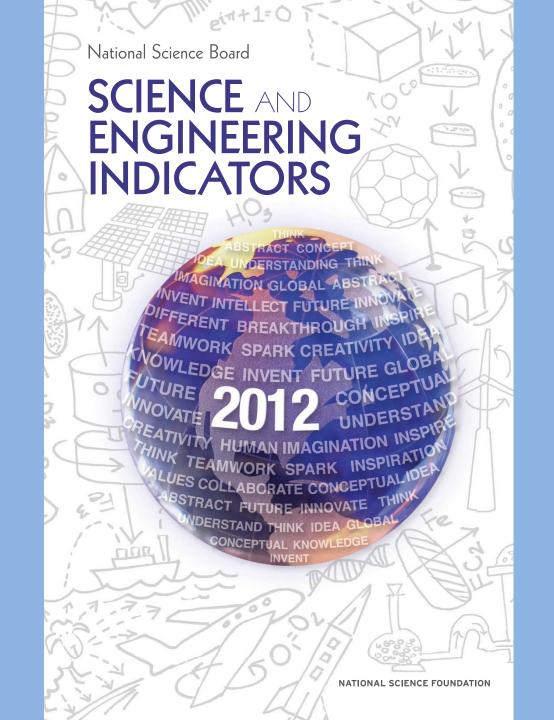
National Science Board, Science and Engineering Indicators 2012

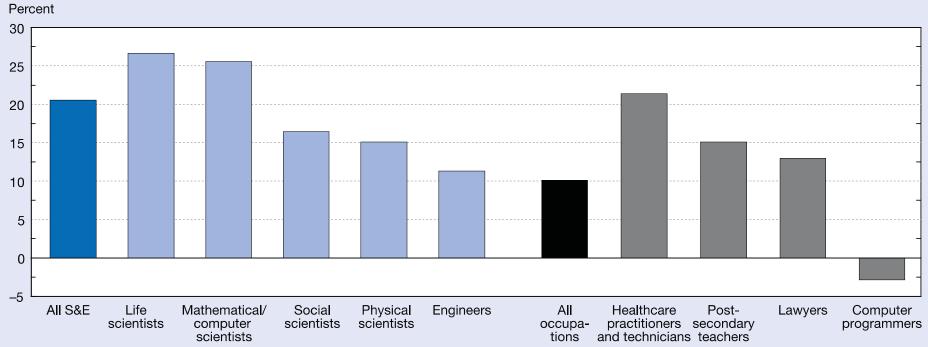
The Big Picture

NSF FY 2013 Budget

- TOTAL: \$7.373 billion
- Increase: \$340 million
- 4.8% over FY 2012 enacted

National Science Foundation

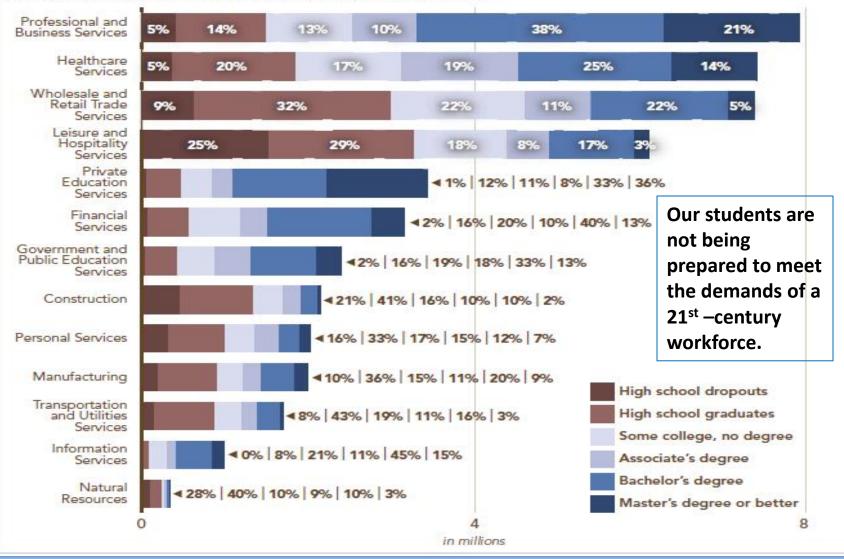

FY 2013 BUDGET REQUEST TO CONGRESS



2. WHY DOES NSF FUND EDUCATION?

"Basic scientific research is scientific capital...How do we increase this scientific capital? First, we must have plenty of men and women trained in science, for upon them depends both the creation of new knowledge and its application to practical purposes."

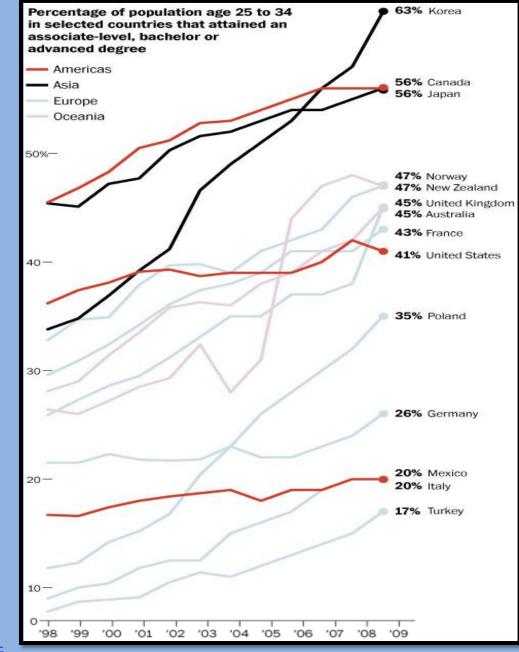
Bush, Vannevar (1945) Science: The endless frontier (Washington, D.C.) accessed April 19, 2012 at http://www.nsf.gov/about/history/vbush1945.htm#transmittal


Figure 3-A Bureau of Labor Statistics projected increases in employment for S&E and selected other occupations: 2008–18

SOURCE: Bureau of Labor Statistics, Office of Occupational Statistics and Employment Projections, National Industry-Occupation Employment Projections 2008–18. See appendix table 3-1.

Science and Engineering Indicators 2012

Total job openings and educational demand by industry in 2018.


Source: Center on Education and the Workforce forecast of educational demand through 2018

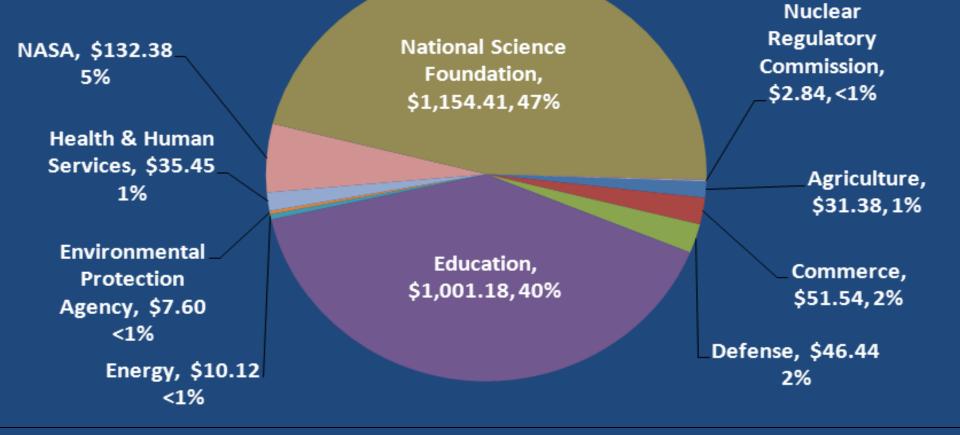
Carnevale, Anthony P., Smith, Nicole, Strohl, Jeff. (June 2010). *Help wanted: Projections of jobs and education requirements through 2018.* Center on Education and the Workforce, Georgetown University: Washington, DC., pg.71

Image used by permission of the Center for Education and the Workforce, Georgetown University.

The US trails much of the developed world in college attainment among young adults, a key measure of global competitiveness.

Source data and image prepared by OECD:

http://www.washingtonpost.com/local/education/playing-catch-up-in-collegecompletion/2011/09/12/gIQAegt6NK_graphic.html accessed September 12, 2011.


ISE PI MEETING, MARCH 15, 2012

"In the United States, fewer than 40% of the students who enter college with the intention of majoring in a STEM field complete a STEM degree. Most of the students who leave STEM fields switch to non-STEM majors after taking introductory science, math, and engineering courses."

PCAST, 2011, Engage to Excel, p. 5.

Funding for Broader STEM Education by Agency (\$2,473 M)

3. WHAT'S NEXT?

Discovery Research K-12 Program Strands

- Learning
- Teaching
- Scale-up and sustainability
- Assessment

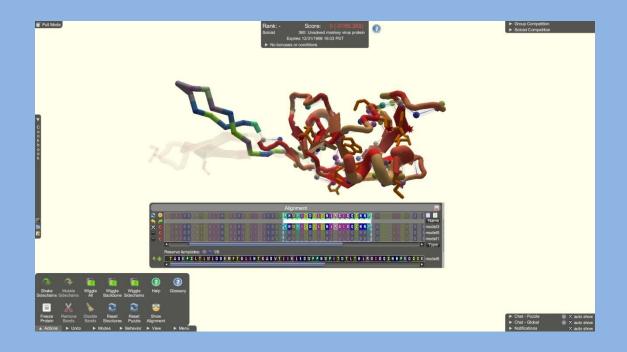
A family participating in a workshop funded by the NSF project "Be a Scientist." Award #1008309, NSF Informal Science Education program.

Image used by permission of the Investigator: Dr. Tara Choklovski

Grand Challenges in Education: Driving Questions

- How does the nation train and develop its science and engineering workforce?
- How should we teach and learn science in the 21st century?
- How does the nation create a scienceliterate citizenry?
- How can we broaden and deepen participation in science and engineering?
- How does NSF most effectively deploy its resources to transform the frontiers in STEM education and learning?

Disruptive innovation, a term of art coined by Clayton Christensen, describes a process by which a product or service takes root initially in simple applications at the bottom of a market and then relentlessly moves 'up market', eventually displacing established competitors. An innovation that is disruptive allows a whole new population of consumers access to a product or service that was historically only accessible to consumers with a lot of money or a lot of skill.


And....

- Cyberlearning
- Lifelong/life wide learning
- New modes of research on learning
- New kinds and uses of data
- Data analytics
- Rapid-cycle improvement
- Citizen science to solve scientific problems
- Designing for scale

"Think about the year when your findings or resources will reach STEM learners and teachers for full scale implementation? What will the environment look like?"

Social Networks Solving Complex Problems

Networks of human minds are taking citizen science to a new level

In 2011, players of Foldit helped to decipher the crystal structure of the Mason-Pfizer monkey virus (M-PMV) retroviral protease, an AIDS-causing monkey virus. Players produced an **accurate 3D model** of the enzyme **in just ten days**. The problem of how to configure the structure of the enzyme had **stumped scientists for 15 years**.

Expeditions in Education- E² Engage, Empower, Energize

- Make frontier science central
- Use theory and research on STEM learning
- Aim for bold learning outcomes
- Commit to common metrics
- Design for scale
- Involve all NSF directorates and offices

Expeditions in Education (E²)

Focus Topics for 2013:

- Transforming Learning for STEM
 Undergraduates
- Sustainability Science
- Cyberlearning and Big Data

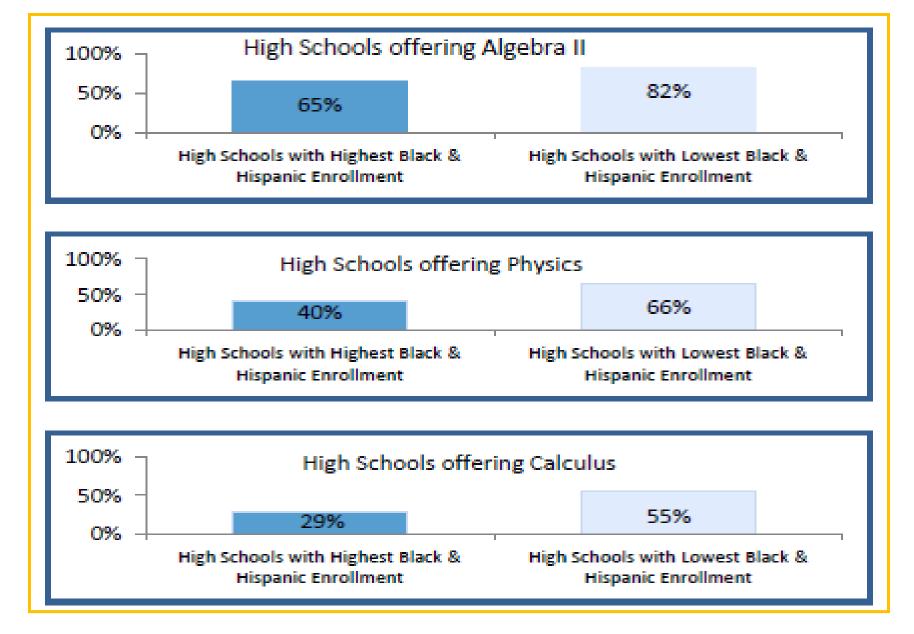
FY 2013 Budget- NSF Total:	\$49 Million
EHR Contributions	\$20.50 Million
R&RA Contributions	\$28.50 Million

Innovation Corps (I-Corps)

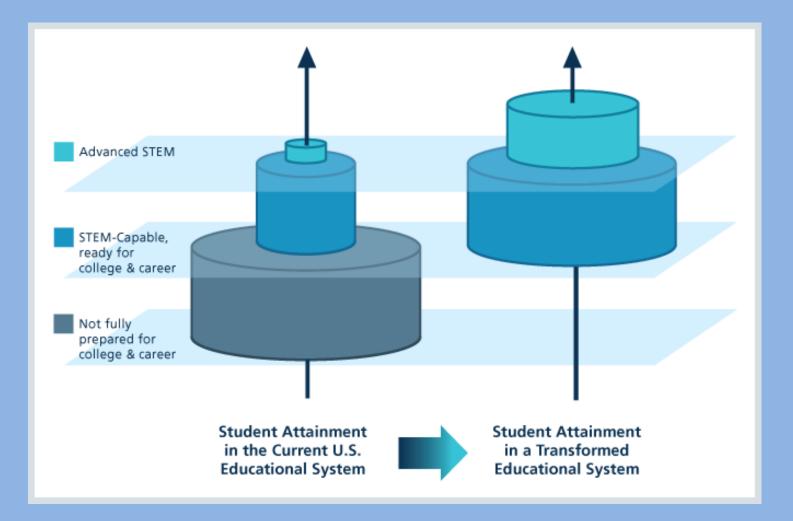
Accelerating innovations from the laboratory to the market

evolutionary improvements?

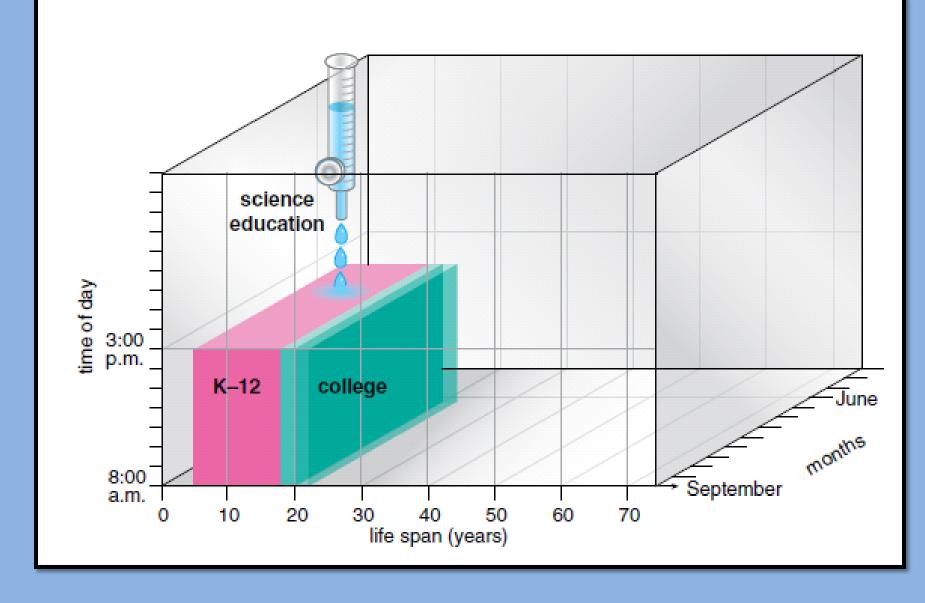
Figure I: U.S. 15-Year-Old Performance Compared with Other Countries


Programme for International Student Assessment (PISA)

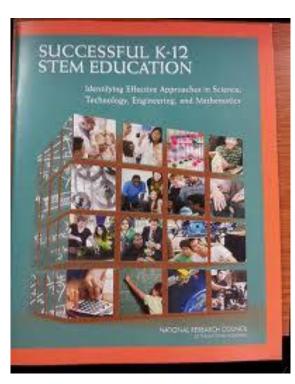
Average is measurably higher than the U.S.


Average is measurably lower than the U.S.

Mathematics (2006) Rank Sour		Science (2006) Rmk	Score	Reading (2003) Rank	Score	Problem Solving (2003) Rank Score	
1 Finland	548	I Finland	563	I Finland	548	I Korea	550
2 Korea	547	2 Careada	534	2 Kortsa	534	2 Finland	548
3 Netherlands	531	3 Japan	531	3 Canada	528	3 Japan	547
4 Switzerland	530	4 New Zealand	530	4 Australia	525	4 New Zealand	533
5 Canada	527	5 Australia	527	5 NewZealand	522	5 Australia	530
6 Japan	523	6 Netherlands	525	6 Instand	515	6 Canada	529
7 New Zealand	572	7 Korea	522	7 Sweden	514	7 Belgium	525
8 Belgium	520	8 Germany	516	8 Netherlands	513	8 Switzerland	521
9 Australia	520	9 United Kingdom	515	9 Belgium	507	9 Netherlands	520
10 Denmark	513	10 Gzech Republic	513	10 Norway	500	10 France	519
11 Czech Republic	510	11 Switzerland	512	11 Switzerland	499	11 Denmark	517
12 loeland	506	12 Austria	511	12 Japan	498	12 Casch Republic	516
3 Austria	505	13 Belgium	510	13 Poland	497	13 Germany	513
14 Germany	504	14 Ireland	508	14 France	496	14 Sweden	509
15 Sweden	502	15 Hungary	504	15 United States	495	15 Austria	506
6 Imland	501	16 Sweden	503	16 Denmark	492	16 Iceland	505
7 France	496	17 Poland	498	17 Iceland	492	17 Hungary	501
18 United Kingdom	495	18 Denmark	496	18 Germany	491	18 Instand	498
9 Poland	495	19 France	495	19 Austria	491	19 Luxembourg	494
10 Slovak Republic	492	20 Iceland	491	20 Czech Republic	489	20 Slovak Republic	492
21 Hungary	491	21 United States	489	2.1 Hungary	482	21 Norway	490
12 Luxembourg	490	22 Slovak Republic	488	22 Spain	481	22. Poland	487
23 Norway	490	23 Spain	488	23 Luxenbourg	479	23 Spain	482
14 Spain	480	24 Norway	487	24 Portugal	478	24 United States	477
25 United States	474	25 Luxembourg	486	25 Italy	476	25 Portugal	470
26 Portugal	466	26 Italy	475	26 Greece	472	26 Italy	4.69
27 Haly	462	27 Portugal	474	27 Slovak Republic	469	27 Greece	448
18 Greece	459	28 Greece	473	28 Turkey	441	28 Turkey	408
29 Turkey	424	29 Turkey	424	29 Mexico	400	29 Mexico	384
30 Mexico	406	30 Mexico	410				1.00
				OED average	494	OECD average	500
CD average	498	OECD average	500				


Source: Organisation for Economic Co-Operation and Development and U.S. Department of Education.

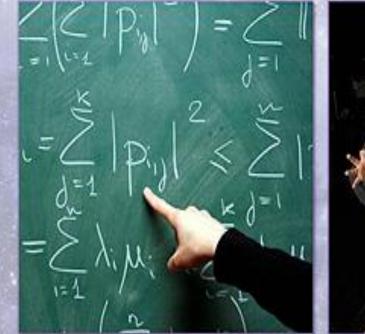
http://www.ed.gov/news/press-releases/new-data-us-department-education-highlights-educational-inequities-around-teacher



Carnegie Corporation of New York. (2009). Visualizing Change. Retrieved from: <u>http://opportunityequation.org/report/visualizing-change</u>

Falk, John H. and Dierking, Lynn D. (2010). The 95 Percent Solution, p. 488. American Scientist, 98.

Image used by Permission of the author.



"Effective instruction capitalizes on students' early interest and experiences, identifies and builds on what they know, and provides them with experiences to engage them in the practices of science and sustain their interest."

> National Research Council, 2011. Successful K-12 STEM Education, p.18

NSF Award #1063495 (Division of Research on Learning in Formal and Informal Settings), *Highly Successful Schools or Programs for K-12 STEM Education: A Workshop, PI:* Martin Storksdieck. National Academy of Sciences

K-16 Mathematics Education Initiative

Moving successful education programs from early research to widespread use

Credit: Thinkstock (left); Amy Snyder, © Exploratorium, Exploratorium.edu (right)

NSF 12-080, Dear Colleague Letter - Request for ideas about a Mathematics Education Initiative

EHR Moving Forward: FY 2013 Request

Research & Development

Leadership & Capacity

Expeditions & Collaborations

Research & Development

Core Launch

- ✓ STEM Learning
- ✓ STEM Learning Environments
- Broadening Participation and Institutional Capacity in STEM
- STEM Professional
 Workforce Preparation

Challenges

- High quality evidence of impact
- Use of NSF-funded resources at scale
- Effective partnering
- Telling the story of DRK-12 successes

Discovering What Works

"Knowing that a program can work is not good enough; we need to know how to make it work reliably over many diverse contexts and situations.

Anthony Bryk, President of the Carnegie Foundation for the Advancement of Teaching (2009), page 298 [as cited by Paul Cobb, February 2, 2012]

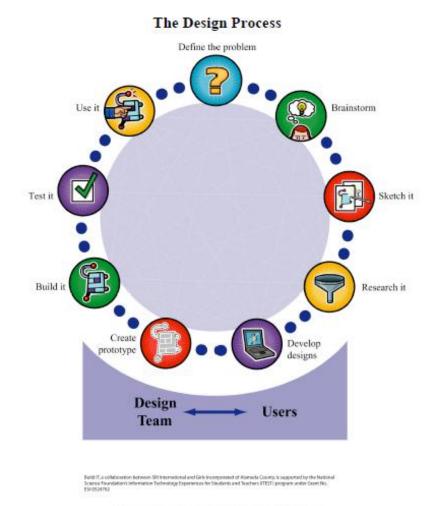
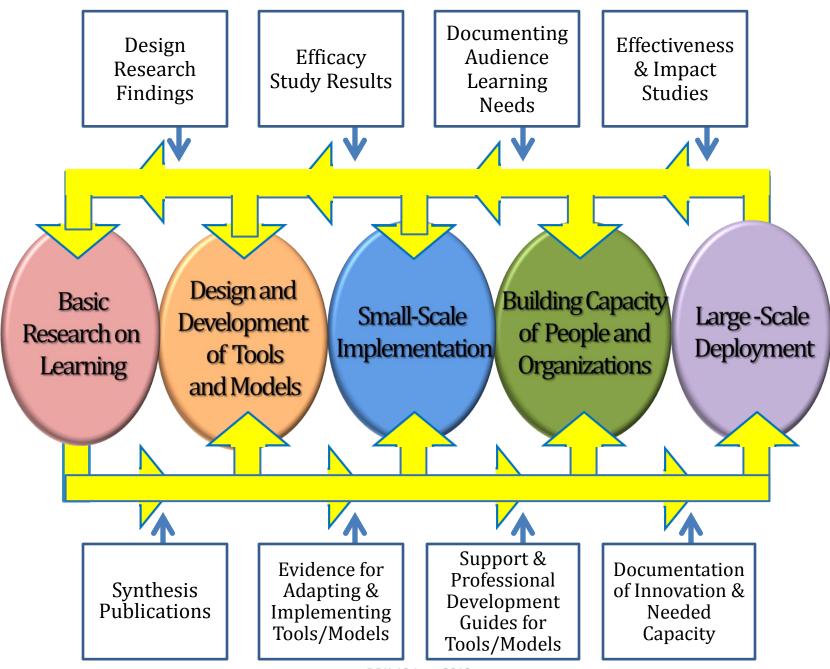
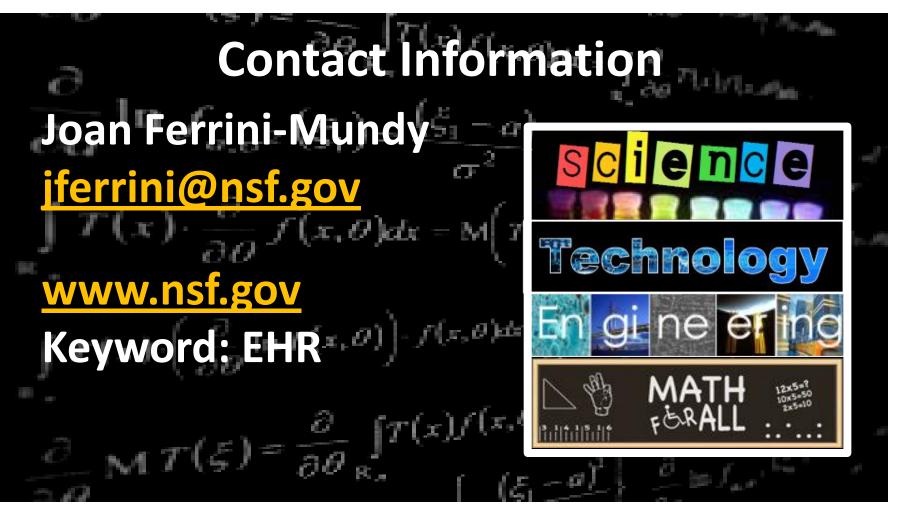



Figure 1. The Design Process poster used in the Build IT curriculum

Koch, Melissa, et al (2005). Build IT: Girls building information technology fluency through design. Retrieved from the Build IT website: <u>http://buildit.sri.com/curric/design.html</u>

Image used by permission of the author.



DRK-12 June 2012

Thank You!

