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Diagnosing Teachers’ Multiplicative Reasoning Attributes 

Introduction 
This document explains the mathematical content of the two Diagnosing Teachers’ 
Multiplicative Reasoning (DTMR) assessments for middle grades teachers. The first assessment 
is intended to measure aspects of multiplicative reasoning critical for multiplication and division 
of fractions; the second assessment is intended to measure core aspects of proportional 
reasoning. We are particularly interested in teachers’ capacities to use problem situations and 
drawn models to develop fraction arithmetic and proportional reasoning with their students. 
Thus, both tests emphasize reasoning with quantities such as lengths, areas, and volumes, not 
computation procedures.  

The DTMR assessments are designed to be used with Diagnostic Classification Models (DCMs), 
an emerging family of psychometric models. Whereas traditional Item Response Theory (IRT) 
models locate examinees along a continuous scale of latent ability, DCMs classify examinees 
into latent groups. The classifications are based on multiple categorical latent variables, termed 
“attributes.” When using DCMs, test developers specify a set of attributes and use those 
attributes to design test items. Items can require reasoning with just one attribute or with 
combinations of attributes. Developers construct full test forms so that each attribute is required 
by several items. DCMs use an examinee’s performance across all items that require a specific 
attribute to measure whether or not the examinee is a “master” of that attribute. The models then 
produce a “profile” for each examinee consisting of probabilities that the examinee is or is not a 
master of each attribute. A test based on k attributes creates 2k patterns of attribute mastery, and 
each pattern defines a group into which examinees can be classified. Because DCMs estimate 
proficiency along multiple constituent dimensions of a given domain, they hold promise for 
measuring knowledge at a finer grain-size than has been achieved with IRT models.  

A main challenge for the DTMR project has been to identify workable attributes for fraction 
arithmetic and proportional reasoning. We sought attributes that (a) were grounded in the 
mathematics education research literature on fractions and proportional reasoning; (b) could be 
reliably measured with machine scoreable paper and pencil assessments; and (c) separated 
teachers so that the DCMs could generate distinct profiles. We encountered challenges with each 
of these requirements. First, the mathematics education research literature contains many 
findings about fine-grained understandings for which researchers have relied on nuances of 
language, gesture, and sequences of inscription that are not preserved in written responses to test 
items. Second, multiple-choice items are the most common format for machine scoreable items 
but can provide weaker evidence for understanding than constructed response items if the 
choices scaffold reasoning about the targeted content. Third, there are gaps in the relevant 
mathematics education literature that include a dearth of research on teachers’ partitioning and 
proportional reasoning.  

We responded to the challenges mentioned above in several ways. First, the attributes described 
herein combine clusters of more fine-grained understandings (sub-attributes) reported in the 
mathematics education research literature. We clustered sub-attributes when we could not write 
items that reliably discriminated among them. This occurred when teachers could apply any one 
of several related understandings to answer items correctly. Second, we developed a pool of 
items that include multiple-choice items, constructed response items that are machine scoreable, 
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and a small number of constructed response items that have to be scored by hand. Third, we 
conducted interviews to gain insight into teachers’ reasoning on topics underrepresented in the 
research literature. 
We arrived at the attributes described herein through several cycles of trial and refinement. 
These cycles included Item Development interviews and Item Response interviews conducted 
with in-service middle grades teachers in California, Georgia, North Carolina, and 
Massachusetts. The Item Development interviews were clinical interviews (Ginsburg, 1997) built 
around constructed response tasks. The goal of these interviews was to investigate the resources 
teachers engaged when reasoning about fractions and proportions in problem situations and 
through drawn models. We used the resulting data to inform our choice of attributes and to 
determine within those attributes where teachers encountered difficulties. We used information 
about teachers’ difficulties to write items that could separate teachers as masters and non-masters 
of our chosen attributes. The Item Response interviews were conducted after teachers had 
answered draft versions of test items. During these interviews we asked teachers why they 
answered the items in the ways they did. Data from Item Response interviews led us to refine 
both our items and our attributes when we could not infer intended attributes from teachers’ 
responses. Our final attributes are based both on mathematics education research and on what we 
could reliably measure with written items.  

We used the sub-attributes to ensure that parent attributes were instantiated in a variety of 
contexts across items on the tests. A teacher who used an attribute appropriately in one situation, 
might not in other situation where the attribute could also be employed productively. Because 
our items are just a sample of situations in which the attributes could be employed appropriately, 
we interpret the term “master” conservatively to mean that a teacher used an attribute 
appropriately across the situations presented in the items and the term “non-master” to mean that 
the teacher did not. When considering the sampling issue, we consistently used forms of 
representation found in curricular materials (e.g., number lines, area models, blocks, etc,.) and/or 
contexts that teachers encounter routinely (e.g., talking to other teachers and to students) to 
provide contexts in which teachers with good command of the attributes would likely recognize 
their relevance.  
We recognize that our attributes are not the only ones that could be used and that they do not 
highlight all important aspects of reasoning about fractions and proportions. Nevertheless, we 
think that a teacher who is proficient with each of our chosen attributes is likely to have a strong 
understanding of how to reason about rational numbers in terms of multiplicative relationships 
among quantities. In what follows, we present the fractions attributes and cited work followed by 
the proportional reasoning attributes and cited work. Each set of attributes was authored by a 
different group indicated in the footer. 
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DTMR Attributes for Fractions 
Andrew Izsák, Erik Jacobson, & Joanne Lobato 

 
Overview 

Table 1 summarizes the four fractions attributes and sub-attributes that contribute to them. We 
use the subcategories as a tool for insuring that we assess each attribute in a variety of contexts. 
For each attribute and sub-attribute we provide a general description and examples that illustrate 
reasoning with that attribute. We also provide references to document how each attribute is 
grounded in the research literature.  
 

Attribute Sub-Attributes 
Norming 
Referent Units for 
Multiplication  

Referent Units 

Referent Units for Division  
Simple Partitioning 
Partitioning in Stages 
Partitioning Using 
Common Denominator 

Partitioning 

Partitioning Using 
Common Numerator 

Iterating Unit Fractions 
Identifying Multiplication 
Situations 
Identifying Quotitive 
Division Situations 

Appropriateness 

Identifying Partitive 
Division Situations 

Multiplicative 
Comparisons 

(No Sub-Attributes) 

 
Those familiar with the literature know that researchers have decomposed rational number into a 
set of related but distinct subconstructs (Kieren, 1988, 1993). Researchers involved in the 
influential Rational Number Project (as summarized in Behr, Harel, Post, & Lesh, 1992) based 
much of their work on four subconstructs suggested by Kieren: (a) quotient, (b) measure, (c) 
ratio number, and (d) multiplicative operator. Behr, Wachsmuth, Post, and Lesh (1984) added a 
fifth subconstruct—part-whole relationships. We do not use these subconstructs as attributes, but 
they are present in the DTMR items.  
 

Attribute 1: Referent Units  
The Referent Units attribute covers aspects of reasoning with units that are required when 
numbers are embedded in problem situations. Teachers who are proficient with numeric 
algorithms for computing are not necessarily adept at identifying appropriate referent units. We 
use two related meanings for the term unit. The first meaning has to do with a standard for 
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measurement, and we will sometimes use the term one whole as a synonym for this meaning. 
The standard could be conventional (e.g., 1 inch, 1 square foot, 1 liter, 1 second, 1 degree 
Celsius, etc.), but a line segment or rectangle provided in a diagram could also establish the 
standard for measurement. The second meaning refers to a part that is either contained in a 
standard for measurement or contains a standard for measurement. For instance, one might take 
1/2 inch or 2 liters as units. The second meaning for unit arises frequently in multiplication and 
division situations. We examine three aspects of reasoning with units: norming, attending to 
referent units in multiplication situations, and attending to referent units in division situations.  
 
Attribute 1a. Norming  
 
The term norming refers to the establishment of standard units for measurement. (See Lamon, 
1994, 2007 p. 644, for discussions of norming.) We emphasize two cases. The first case includes 
(a) choosing a standard unit from alternate choices and (b) looking at a given problem situation 
in more than one way based on different choices for the standard unit. The second case includes 
changing the standard unit as one reasons through a problem. This is sometimes referred to as 
renorming.  
 
Example 1. Choosing a standard unit for measurement from alternate choices 
When using base-10 blocks (see below) to represent numbers, one has to choose whether a 
block, a flat, a rod, or a cube will serve as the standard unit, or the one whole. When reasoning 
about whole numbers, one might let the cube (the smallest shape) serve as the standard unit. 
When reasoning about decimals, however, one might let different shapes serve as the one whole. 
To represent 6.54, one could let the flat represent 1, the rod represent one tenth, and the cube 
represent one hundredth (6 flats, 5 rods, and 4 cubes). Alternatively, one could let the block 
represent 1, the flat represent one tenth, and the rod represent one hundredth (6 blocks, 5 flats, 
and 4 rods). Sometimes teachers lack flexibility in choosing the standard unit. For instance, when 
interpreting base-10 blocks, they might think that only the cube can represent 1.  
 

 
Figure 1. Base-10 blocks. 

 
Example 2. Changing the standard unit for measurement (Renorming) 
The following problem requires making two choices for the standard unit for measurement: 

 
Sam and Morgan are comparing the amount of liquid in their beakers as shown in 
the diagram below. Sam claims that Morgan has 20% less than she has. Morgan 
claims that Sam has 25% more than she has. Who is right? (InterMath, 
http://intermath.coe.uga.edu) 
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To see that both Sam and Morgan can be right requires first using Sam’s amount of liquid as the 
standard unit and then using Morgan’s amount of liquid as the standard unit. Some teachers are 
not facile at such renorming.  
 
Comments/Boundaries  
Norming is closely related to the idea of unitizing, which Lamon (2007) defines as “the process 
of mentally chunking or restructuring a given quantity into familiar or manageable or 
conveniently sized pieces in order to operate with that quantity” (p. 630). Unitizing is a major 
accomplishment for elementary school students (e.g., Olive & Lobato, 2008; Steffe, 1988).  
 
Attribute 1b: Referent Units for Multiplication  
 
As one moves from additive to multiplicative situations, referent units for numbers become more 
complex. If A, B, and C are values for quantities in some problem situation, then for the equation 
A + B = C to make sense A, B, and C must refer to the same units. In contrast, in the equation A 
x B = C each value refers to a different unit. (See Schwartz, 1988, for one discussion of 
multiplication as a referent-transforming operation.) Although most teachers can use algorithms 
to calculate the correct product of two fractions or two decimals, several studies (e.g., Armstrong 
& Bezuk, 1995; Eisenhart et al., 1993; Izsák, 2008; Sowder, Philipp, Armstrong, & Schappelle, 
1998) have reported constraints on inservice and preservice teachers’ performance when using 
drawings to explain such products. Some teachers can reason about referent units for 
multiplication to a point by relying on an association between the word “of” and multiplication, 
but teachers can still have difficulty identifying appropriate referent units in multiplication 
situations.  
 
Example 1. Distinguishing part-of-a-part from part-of-a-whole 
Izsák (2008) reported a case in which a teacher and her students had trouble understanding one 
another, at least in part, because they stumbled over referent units for different terms in a fraction 
multiplication problem. Ms. Archer introduced her sixth-grade students to fraction multiplication 
with a number line that showed a solution to 1/5 of 2/3 (see Figure 2). The drawing came from 
the teacher’s edition of the Bits and Pieces II unit in Connected Mathematics 2 (Lappan, Fey, 
Fitzgerald, Friel, & Phillips, 2006). It showed the interval from 0 to 1 subdivided into thirds. 
Each third was further subdivided into 5 parts. Two parts were shaded as shown. Using the 
diagram to determine the answer to 1/5 of 2/3 requires combining two interpretations of one bold 
segment: It is 1/5 of the 1/3 length, and it is 1/15 of the one whole. Thus, in an appropriate 
interpretation of Figure 2, the referent unit for 1/3 and 1/15 is the one whole, but the referent unit 
for 1/5 is 1/3. 
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Figure 2. A solution to 1/5 of 2/3 on the number line. 

 
One student asked Ms. Archer why she talked about 1/5 as 1/15. Apparently thinking of 
equivalent fractions, the student thought 1/5 was equal to 3/15. He did not seem to realize that 
the referent unit for 1/5 was 1/3. Ms. Archer had trouble responding to her student, at least in 
part, because she herself did not maintain explicit and appropriate referent units for each fraction 
in the problem. She discussed 3/15 sometimes as if the 15ths referred to parts of the whole and 
sometimes as if they referred to parts of 1/3. In a subsequent interview during which she 
reviewed a video recording of this lesson excerpt, she still did not discuss explicitly the different 
referent units for each fraction in the problem.  
 
Example 2. Reasoning when the whole is not present visually  
We have found through interviews conducted as part of the DTMR project that teachers can 
struggle to reason about parts of parts when the whole is not explicitly identified in a given task. 
Some teachers need to have the one whole drawn out in order to reason about parts of that whole 
appropriately. For one task, we presented teachers the diagram shown below and asked for the 
areas of the large rectangle, one row, and each of the two shaded regions. The teachers we 

interviewed could calculate the correct product of 

! 

3
4

 x 

! 

12
5

 and were familiar with using 

rectangular areas to model products of proper fractions, but they struggled with this task. For 
instance, several teachers thought that the area of the lightly shaded region was one whole. Other 
teachers had to extend the drawing to show two complete wholes in order to identify the areas of 
the shaded regions correctly. These difficulties indicate constrains on teachers’ capacities to 
reason with parts of parts.  
 
 
 
 
 
 
 
 
 

 

Figure 3. An area model for 
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Comments/Boundaries  
Teachers’ difficulties with referent units in fraction multiplication situations may be related to 
their interpretations of fractions: Those who need to see a complete whole may be thinking of a 
fraction as a part-whole relationship rather than as a multiplicative relationship.  
 
Attribute 1c: Referent Units for Division  
 
Although most teachers can use algorithms to calculate the correct quotient of two fractions or 
two decimals, many studies have reported difficulties that U.S. teachers have with meanings for 
fraction division (e.g., Ball, 1990; Ma, 1999; Tirosh & Graeber, 1990). Tirosh and Gaeber 
reported that in one sample of 58 preservice elementary teachers, those that did have a meaning 
for fraction division had the partitive meaning. We have encountered teachers that had only the 
quotitive model (e.g., Izsák, Jacobson, de Araujo, & Orrill, in press). Although Ma reported 
cases of Chinese teachers who had both models for fraction division, the extent to which U.S. 
teachers have one or both models remains unclear. Simply having an appropriate meaning for 
division (quotitive or partitive) is not always sufficient to complete a division task when numbers 
are embedded in problem situations (e.g., Izsák et al., in press). Teachers also need to be able to 
understand the units to which numbers refer. 
 
Example 1. Quotitive division 
Quotitive division asks how many groups are formed when A objects (or units) are separated into 
groups of B objects (or units). One is measuring the group of A objects (or units) in terms of 
groups of B objects (or units). A and B can be whole numbers or fractions. Consider the 
following problem: 
 

John is making batches of cookies. Each batch requires 

! 

1
4

 cup of butter. He has 

! 

1
3

 

of a cup of butter. How many batches can he make?  
 

This question is asking how many

! 

1
4

 cups are in 

! 

1
3

 cup.  In the corresponding division statement, 

! 

1
3

 ÷ 

! 

1
4

 = 

! 

4
3

, the referent unit for 

! 

1
3

 is a standard unit for measurement, 1 cup. The referent unit 

for 

! 

1
4

 is a rate, 

! 

1
4

 cup of butter per batch. Strictly speaking the referent unit for 

! 

4
3

 is whole 

batches, but one can also think of the referent unit for 

! 

4
3

 as 

! 

1
3

 cups.  

 
Example 2. Quotitive division 
Izsák et al. (in press) reported a study of teacher learning in professional development during 
which a teacher used a repeated subtraction model for fraction division to explain quotients that 

were whole numbers. Using repeated subtraction, she could explain why 

! 

1
3

 ÷ 

! 

1
6

 = 2 with a 

drawn model. She knew that the answer, 2, referred to the number of 

! 

1
6

 there are in 

! 

1
3

. This 

same teacher had a hard time using drawn models to explain quotients that were not whole 
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numbers. For instance, she struggled to use rectangular areas to model the division statement 

! 

2
3

 

÷ 

! 

3
4

 = 

! 

8
9

. She said that the problem asked how many times 

! 

3
4

 could be subtracted from 

! 

2
3

 but 

interpreted the quotient to mean 

! 

8
9

 of 1, rather than 

! 

8
9

 of 

! 

3
4

. Thus, the repeated subtraction 

model seems to support appropriate referent units only for some division problems.  
 
Example 3. Partitive division 
Partitive division asks how many objects (or units) are in each group when A objects (or units) 
are separated into B groups. Again, A and B can be whole numbers or fractions. Teachers are 
very familiar with the partitive model in case of whole numbers when it is interpreted as sharing, 
but there is little in the mathematics education research literature on U.S. teachers’ understanding 
of the partitive model for fraction division. Consider the following problem:  
 

Susy is draining her bathtub. If it takes 1/3 of a minute to drain 1/4 of the bathtub, 
how many minutes does it take to drain the whole bathtub?  

 
In the corresponding division statement, 1/3 ÷ 1/4 = 4/3, the referent unit for 1/3 is a standard 
unit for measurement, 1 minute. The referent unit for 1/4 is one bathtub, a unit for volume in this 
problem. The referent unit for 4/3 is a rate, minutes for one bathtub. In the DTMR interviews, 
some teachers recognized that they could use division to solve partitive division problems, but 
they could not explain why in terms of the presented problem situation. Other teachers 
recognized that problems like the bathtub problem can be solved using a proportion, but few of 
these teachers saw connections to fraction division. We see partitive division as a special case of 
proportional reasoning.  
 
Comments/Boundaries  
We include partitive division both because of the connection to proportional reasoning and 
because we hope that our measure will be used in conjunction with professional development 
that treats the partitive model for fraction division.  
 

Attribute 2: Partitioning  
The Partitioning attribute covers aspects of partitioning required for using drawn models to solve 
fraction arithmetic problems. Numerous researchers have highlighted the central importance of 
partitioning quantities in students’ developing understanding of rational numbers (e.g., Confrey, 
1994; Confrey & Smith, 1994, 1995; Empson, 1999; Empson, Junk, Dominguez, & Turner, 
2005; Empson & Turner, 2006; Fosnot & Dolk, 2002; Hackenberg, 2007, 2010; Hackenberg & 
Tillema, 2009; Kieren, 1990; Lamon, 1996, 2007; Mack, 1993, 1995; Pitkethly & Hunting, 1996; 
Pothier & Sawada, 1983; Steffe, 2003, 2004; Streefland, 1991, 1993). Several researchers (e.g., 
Confrey, 1994; Confrey & Smith, 1994, 1995; Empson et al., 2005; Empson & Turner, 2006; 
Hackenberg & Tillema, 2009; Steffe, 2003, 2004) have examined relationships between 
students’ partitioning and their conceptions of whole number multiplication. To the best of our 
knowledge, researchers have yet to examine closely teachers’ capacities to partition. We use the 
only study of which we are aware (Mojica & Confrey, 2009) in an example below.  
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We are interested not only in partitions that divide a quantity into equal-sized pieces but also in 
nested levels of units in which units at one level in a partition have a fixed multiplicative relation 
with units at the next level. As an example, consider a 1-foot unit divided into four one-fourths, 
each of which contains three 12ths. Then three 12ths make up each fourth. In this example, the 
one whole is at the top level, but it does not have to be. As an example where the one whole is at 
the mid level, consider a 2-foot length where each foot is divided into four fourths, and each 
fourth is further divided into three parts. Then three 12ths make up each fourth, and four fourths 
make up each foot. As an example where the one whole is at the finest level, consider the base-
10 system for whole numbers. The ones are nested in tens, tens are nested in hundreds, and so 
forth. We examine cases that do not make particular use of multiplicatively nested unit 
structures—simple partitioning—and cases that do make use of multiplicatively nested unit 
structures—partitioning in stages, partitioning using common denominators, and partitioning 
using common numerators.  
 
Attribute 2a. Simple Partitioning  
 
The term simple partitioning refers to partitioning with just two levels of units. The whole unit is 
one level divided into a certain number of equal-sized pieces which form the second level. We 
expect teachers to be adept at simple partitioning when the whole is given.  
 
Example 1. Simple partitioning. 
Into how many equal-sized parts would you need to cut 1 pizza so that Charles gets 3/5 as much 
pizza as Tony? 
 
Here a teacher would need to see that 8 parts are needed and so the pizza should be divided into 
eighths.  
 
Attribute 2b. Partitioning in Stages  
 
The term partitioning in stages refers to creating an initial partition of some quantity and then a 
repartition. Whole number factor-product combinations can guide such partitioning activity. As 
an example, using the fact that 2 x 2 x 3 = 12, one could begin to divide a length into 12ths by 
dividing the length in half, then dividing the halves in two to create fourths, and finally dividing 
the fourths in three to create 12ths. Notice that partitioning in stages results in a three-level 
structure (12ths nested in fourths nested in the one whole). Past research (e.g., Hackenberg & 
Tillema, 2009; Steffe, 2003, 2004) has reported that forming three-level unit structures is 
difficult for students and plays a fundamental role in their capacities to use drawn models to 
reason about products of fractions. Less is known about teachers’ capacities to form three-level 
unit structures. Izsák, Tillema, & Tunç-Pekkan (2008) reported a case in which forming three-
level unit structures was difficult for in-service middle grades teachers and constrained their 
capacity to used drawn models of fraction multiplication with their students effectively. The 
teachers were using Connected Mathematics Project materials (Lappan, Fey, Fitzgerald, Friel, & 
Phillips, 2002). Izsák et al. (in press) reported that some teachers in a professional development 
course appeared to reason with three levels of units, while others appeared to reason with just 
two levels of units.  
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Example 1. Partitioning in stages using whole-number factor-product combinations 
In the only study of teachers’ partitioning of which we are aware, Mojica and Confrey (2009) 
reported that even after instruction pre-service elementary teachers had trouble finding more than 
one method for folding a strip of paper into 12 equal-sized parts or into18 equal-sized parts. In 
our experiences, middle grades teachers are generally adept at breaking a given whole unit into a 
certain number of equal-sized parts, but they need connections between whole number 
multiplication and partitioning if they are to help students solve problems before instruction in 
standard algorithms for numeric computation.  
 
Example 2. Partitioning in stages and multiplication of fractions 
Partitioning in stages can be useful when using drawn quantities to reason about multiplication. 
For instance, recursive partitioning (Steffe, 2003, 2004) is defined to be taking a partition of a 
partition in the service of a non-partitioning goal. To understand the result of taking 1/4 of 1/3, 
students might begin by partitioning a unit into three pieces and continue by partitioning the first 
of those pieces into four smaller pieces (see Figure 4a). Determining the size of the resulting 
piece is a non-partitioning goal, and students could accomplish this in several ways. Students 
might see that concatenating 12 copies reconstructs the original unit (see Figure 4b). This 
solution requires constructing a unit of units (one unit containing 12 twelfths). This is a two-
levels of units structure. Alternatively, students might recursively partition by subdividing each 
of the remaining thirds into four pieces (see Figure 4c). In contrast to the first solution, recursive 
partitioning involves constructing a unit of units of units (in the present example, one unit 
containing three thirds, each of which contains four twelfths). This is a three-levels of units 
structure because the thirds are maintained throughout. Other researchers have also reported that 
taking partitions of partitions has been central to students’ construction of fraction concepts (e.g., 
Fosnot & Dolk, 2002; Kieren, 1990; Streefland, 1991, 1993).  
 
 
 

(a) 
 

 
(b) 

 
 

(c) 
 
Figure 4. Determining 1/4 of 1/3. (a) Constructing part of a part. (b) Using two levels of units to 

determine 1/12. (c) Using three levels of units to determine 1/12. 
 
Comments/Boundaries 
In DTMR interviews have observed variation in teachers’ capacities to coordinate multiple levels 
of units: Some teachers appear to coordinate three levels of units, while others appear to 
coordinate only two levels of units. We have been unable, however, to write items that reliably 
diagnose which teachers are coordinating three levels of units and which are only coordinating 
two levels of units. We note that the capacity to reason with three-level unit structures may make 

0 

0 

0 1 

1 

1 
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it easier to attend to appropriate referent units and to perform more complex partitioning. This 
could help explain strong correlation between the referent units and partitioning attributes, if we 
see such correlation in the national sample.  
 
Attribute 2c. Partitioning Using Common Denominators  
 
The term partitioning using common denominators refers to using knowledge of common 
denominators as a resource for guiding partitioning activity. Teachers know the importance of 
common denominators when using numerical methods for comparing, adding, or subtracting 
fractions. In DTMR interviews, however, we observed that teachers did not always recognize 
quickly that knowledge of common denominators could be used to partition drawn quantities in 
service of solving problems. 
 
Example 1. Using common denominators to find common partitions 
Teachers are generally adept at partitioning when the one whole is presented as part of the 
problem and they know the size pieces they need to construct. In cases where the one whole is 
not presented, teachers have to rely on other understandings to partition. The following task can 
be accomplished by focusing on a common partition of 7ths and 5ths: 
 

Subdivide the interval from 0 to 2/7 into equal-sized pieces to locate 1/5. 
 
 
 
 
 
 
 
Using the common denominator of 1/5 and 2/7, teachers can partition the line segment into 10 
parts (35thts), five of which comprise 1/7 and seven of which comprise 1/5. In this case, the 
levels of units are 35ths, 7ths, 5ths, and the (imagined) one whole. In DTMR interviews, some 
teachers saw this more quickly than others.  
 
Example 2. Using common denominators to measure combined lengths  
Consider the sum 1/2 + 1/3 (see Figure 5a). To measure a combined length of 1/2 and 1/3, one 
could create a structure of multiplicatively nested units that simultaneously subdivides halves 
and thirds of the whole. Because 6 is a common denominator, repartitioning the one whole into 
sixths will suffice. The partitioning in Figure 5b shows that 1/2 is the same length as 3/6, that 1/3 
is the same length as 2/6, and that the sum is therefore 5/6. While teachers know the central role 
that common denominators play in comparing, adding, and subtracting fractions, students 
learning to add and subtract fractions oftentimes do not understand the need for common 
denominators. Finding common partitions like the one shown in Figure 5b can motivate the need 
for common denominators. Here the levels of units are 6ths, 3rds, halves, and the whole.  

0 

! 

2
7

0 
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(a) 
 
 
 
 
 

(b) 
 

Figure 5. (a) A length of 1/2 + 1/3. (b) Nesting sixths into halves and thirds. 
 
Example 3: Common denominators, referent units, and division of fractions 
Knowledge of common denominators can aide partitioning quantities when solving fraction 
division problems. Consider the problem, “How many thirds are in one half?” To solve this 
problem, one can draw one third inside of one half (see Figure 6a). Answering the problem 
requires relating the bold segment to the length 1/3, which is an example of attending to referent 
units (Attribute 1c). Because 6 is a common denominator of 1/2 and 1/3—or a common multiple 
of 2 and 3—repartitioning the one whole into sixths will suffice. With this partition, one can see 
that the bold segment is 1/2 of 1/3, and therefore the answer is 3/2 (see Figure 6b). Here the 
levels of units are 6ths, 3rds, halves, and the whole. 
 
 
 
 
 

(a) 
 
 
 
 
 

(b) 
 

Figure 6. (a) One third, inside of one half, inside of one whole. (b) Nesting sixths  
into halves and thirds. 

 
Comments/Boundaries 
In DTMR interviews we have seen teachers who knew that they could use common 
denominators to partition but had trouble doing so appropriately. As one example, a teacher 

1

 

0

 

1/2 1/3 1 

0

 

1/2 1/3 1 

1

 

0

 

1/2 1/2 + 1/3 1 

0

 

1/2 1/2 + 1/3 1 
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might know that the common denominator for 

! 

1
4

 and 

! 

1
6

 is 24 but then try to divide just the 

! 

1
4

 or 

the 

! 

1
6

 into 24 parts, suggesting difficulty with three-level unit structures.  

 
Attribute 2d. Partitioning Using Common Numerators  
 
The term partitioning using common numerators refers to using knowledge of common 
numerators as a resource for guiding partitioning activity. Unlike the notion of common 
denominators, which is explicitly discussed and emphasized in most fractions instruction, the 
notion of common numerators may be less familiar to teachers. Nevertheless, partitioning by 
common numerators can be useful for solving some problems, such as partitive division 
problems. Because we realize that many teachers will be less familiar with common numerators, 
we do not expect them to articulate this idea explicitly.  
 
Example 1. Using common numerators in partitive division situations  
artitioning using common numerators is useful when solving partitive division problems (and 
proportion problems more generally). Imagine a class in which students are solving a series of 
problems intended to culminate in learning the invert and multiply algorithm for fraction 
division. Students have solved several problems using fundraising thermometers when they turn 
to the following problem:  
 

Jamal’s class is raising money for a school field trip. After 2/3 of the first month, the 
class has raised 5/7 of the money it needs. Assuming that the class is raising money at a 
steady pace, how many months will it take for the class to raise all the money it needs? 
Use a fundraising thermometer to answer the question.  

 
Students might start by drawing the part of the thermometer that represents the amount of money 
raised thus far (Figure 7a). To continue the solution, they would need to partition the part of the 
thermometer in a way that simultaneously subdivides the thirds of months and the sevenths of 
money. This requires partitioning not by the common denominator, but by the common 
numerator, 10 (Figure 7b). Students could then iterate 1/7 of the money to determine that the 
money they need to raise corresponds with 14/15 of a month (Figure 7c).  
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(a) 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 

(c) 
 
Figure 7. (a) A thermometer representation of 2/3 months and 5/7 of the money. (b) Subdividing 

thirds and sevenths. (c) Iterating to determined that the money will be raised in 14/15 months. 
 
Comments/Boundaries 
In the DTMR interviews, we observed that teachers could often partition using a single 
numerator. For instance, told that a given length is 4/3 units, many teachers can partition the 
length into 4 parts and take 3 of those parts to reconstruct the one whole. At the same time, we 
found that problems involving partitioning using common numerators were difficult for the 
teachers we interviewed. Because the notion of common numerators is unfamiliar to many 
teachers, we expect items that load onto this sub-attribute to be particularly difficult.  
 

Attribute 3: Iterating 
The Iterating attribute focuses on iterating unit fractions (fractions whose numerators are 1). 
Iterating can play an important role not only in solving problems but also in establishing 
meaning for fractions. Below we contrast two meanings for fractions.  
 
At least in the United States, the part-whole definition for fractions is used widely in school 

curricula. According to this definition 

! 

A
B

 is interpreted to mean a subset of cardinality A taken 

from a set of cardinality B. As an example, one might illustrate the meaning of 

! 

3
4

 by saying 

“three out of four cookies are chocolate chip.” Several researchers (e.g., Ball, 1993; Izsák, 2008; 
Mack, 1990, 1993, 1995; Owens & Super, 1993; Streeflend, 1991) have reported students’ use of 
this definition. A major limitation is that only proper fractions can be considered: It does not 

! 

2
3

 

! 

5
7

 

! 

2
3

 

! 

5
7

 

! 

14
15

 

1 

month 

money 

month 

money 

month 

money 
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make sense for a subset to be larger than the original set. Nevertheless, in various projects, we 
have observed teachers use A-out-of-B language when working with students, when participating 
in professional development, and when participating in DTMR interviews.  
 

Iterating unit fractions supports an alternative to the part-whole definition in which 

! 

A
B

 means A 

copies of the unit fraction one-Bth of some quantity M. Using this interpretation, one can 
interpret 3/8 as 3 one-eighths and 9/8 as 9 one-eighths. Thus, this definition does not create as 
much of an obstacle to understandings improper fractions, among other things. Although this 
second definition has not been used widely in the United States, Beckmann (2010) emphasized 
the A one-Bths definition in Mathematics for Elementary Teachers (p. 39) as did the Common 
Core State Standards (National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010, see p. 24). Curricula used in Japan introduce fractions using 
the A one-Bths definition (Hironaka & Sugiyama, 2006, see book 3B). Curricula used in 
Singapore introduce fractions using the part-whole definition but switch to the A one-Bths 
definition for improper fractions (Curriculum Planning & Development Division, Ministry of 
Education Singapore, 2003, see books 3B and 4A). Thompson and Saldanha (2003) argued the 
benefits of the A one-Bths of M interpretation, and past research (Steffe, 1993, 2001; Tzur, 1999, 
2000, 2004) has demonstrated the constructive role that iterating unit fractions can play in 
students’ construction of fraction knowledge. Teachers need to be adept at iterating unit fractions 
so that they can facilitate this fundamental way of thinking in their students. 
 
Example 1. Iterating to establish the whole and improper fractions 
The following example is derived a task discussed by Lamon (2005, p. 175) and contains two 
applications of iterating a unit fraction: one application to determine the location of the one 
whole and a second application to determine an improper fraction. 
 

Given the point 2/3, determine point x.  
 

 
 
 
 
First, if we think of 2/3 as 2 (1/3 length units), we can partition the 2/3 length in half to 
determine the 1/3 unit and then iterate the 1/3 unit three times to find the one whole length. This 
interpretation emphasizes the relative size of 2/3 to 1. 
 
 
 
 
 
Second, to determine the point x, we could see that the one whole is partitioned into 15 parts and 
that iterating one of those parts 16 times establishes that x is 16/15. This interpretation 
emphasizes the relative size of 16/15 to 1. 
 

x 
 

2/3 0 

1/3 1 0 x 2/3 1 
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Example 2. Using common denominators to find a common unit fraction, iterating, and 
attending to referent units 
Finding common unit fractions is a useful strategy in many contexts. As one example, consider 
once more the following division problem:  
 

John is making batches of cookies. Each batch requires 

! 

1
4

 cup of butter. He has 

! 

1
3

 

of a cup of butter. How many batches can he make?  
 
One way to draw a model for this problem is shown below: 
 
 
 
 
 

(a) 
 
 
 
 
 

(b) 
 

Figure 8. (a) A linear model showing 

! 

1
4

 and 

! 

1
3

. (b) 

! 

1
12

 as a common unit fraction for 

! 

1
4

 and 

! 

1
3

. 

 

Because 

! 

1
4

 does not divide 

! 

1
3

 evenly, a common unit fraction is needed in order to understand 

the multiplicative relationship between these two fractions. Common denominators can be used 
to partition in terms of common unit fractions. In the example above, because 4 and 3 are factors 

of 12, 

! 

1
12

 can be iterated 3 times to exhaust 

! 

1
4

 and 4 times to exhaust 

! 

1
3

. This implies that the 

answer is 

! 

4
3

. A complete solution to the problem also requires attention to referent units: The 

answer is 

! 

4
3

 of 

! 

1
3

.  

 
Example 3. Partitioning and iterating in the context of proportional reasoning  
Combining partitioning with iterating is important for reasoning about both fractions and 
proportions. Consider the following proportion problem: 
 

One batch of a certain shade of purple paint is made by mixing 3 pails of blue 
paint with 2 pails of red paint. If I have 5 pails of blue paint, how many pails of 
red paint do I need to make the same shade of purple? (InterMath, 
http://intermath.coe.uga.edu) 

 

1

 

0

 

1/3 1 
1/4 

1/4 
0

 

1/3 1 
1/12 
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We watched a teacher in a professional development course solve this problem using a double 
number line. He used one number line for blue paint and one for red paint (see Figure 9a). The 
tick marks for 0 on both number lines are aligned, as are the tick marks for 3 pails of blue paint 
and 2 pails of red paint, for 6 pails of blue paint and 4 pails of red paint, and for 9 pails of blue 
paint and 6 pails of red paint. He explained that he used the common multiple 6 to partition one 
batch made with 3 pails of blue paint and 2 pails of red paint. His use of whole number 
multiplication to guide his partitioning is similar to partitioning in stages, using common 
denominators, and common numerators (Attributes 2b, 2c, and 2d). In this case, he partitioned 
the 3:2 unit to create the 0.5:0.33 unit. He then iterated the 0.5:0.33 unit to create the following 
sequence of composed units: 3.5:2.33, 4:2.66, 4.5:3, 5:3.33, and finally 5.5:3.66 (see Figure 9b). 
He concluded that 5 pails of blue paint require 3.33 (more precisely 3 1/3) pails of red paint.  
 
 
 
 
 
 
 
 

 
(a) 

 
 

 
 

 
 
 
 
 
 
 

(b) 
 

Figure 9. (a) Using multiplication to partition a composed unit. (b) Combining the 3:2 unit with 
four copies of the 0.5:0.33 unit to create the 5:3.33 unit. 

 
Comments/Boundaries 
None. 

Attribute 4: Appropriateness 
The Appropriateness attribute refers to identifying an appropriate operation or mathematical 
expression for a given problem situation. Doing so requires identifying a relationship among 
quantities in the situation (perhaps presented through a word problem or a diagram) and 
associating this quantitative relationship with an appropriate arithmetical operation. Past research 
has demonstrated that preservice and inservice elementary teachers (including Grade 6 teachers) 

0 3 6 9 

0 2 4 6 

0 3 6 9 

0 2 4 6 

3.5 4.5 5.5 

4 5 
2.33 3 3.66 

2.66 3.33 
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can have difficulty identifying the appropriate operation in multiplication and division situations 
(e.g., Graeber & Tirsoh, 1988; Harel & Behr, 1995; Harel, Behr, Post, & Lesh, 1994; Tirsoh & 
Graeber, 1990). Much of this work has been framed by work on intuitive models for arithmetic 
operations (Fischbein, Deri, Nello, & Marino, 1985) and has focused on decimals. Teachers 
should be able to identify multiplication and division situations that use a range of number types 
(e.g., whole numbers, fractions, and decimals), various combinations of number sizes (e.g., a 
smaller number divided by a larger number and vice versa), and in a range of contextual settings 
(e.g., continuous as well as discrete settings). We examine three cases of appropriateness: 
identifying multiplication situations, identifying quotitive division situations, and identifying 
partitive division situations. The proportional reasoning attributes also include an 
appropriateness attribute that covers identifying situations that are direct proportions. 
 
Attribute 4a. Identifying Multiplication Situations 
 
Identifying multiplicative situations requires recognizing a quantitative structure either involving 
A groups of size B or a multiplicative “times as many” comparison. A and B can be whole 
numbers, fractions, or decimals. Teachers are generally able to identify multiplicative situations 
when all the numbers are whole numbers. Working with whole number multiplication can lead to 
two intuitive rules: (a) The multiplier must be a whole number and (b) The product must be 
larger than either of the two numbers being multiplied together. Past research has demonstrated 
that teachers can struggle to discriminate between multiplication and division situations, 
especially when multiplying by decimals between 0 and 1 (Graeber & Tirosh, 1988; Graeber, 
Tirosh, & Glover, 1989; Harel & Behr, 1995; Post, Harel, Behr, & Lesh, 1991; Tirosh & 
Graeber, 1989). In case of fractions, we have seen in DTMR interviews that teachers often rely 
on an association between the word “of” and multiplication to identify multiplication situations. 
 
Example 1:  
Graeber and Tirosh (1988) reported that in a sample of 129 preservice elementary teachers most 
could write appropriate expressions that conformed to the two intuitive rules discussed above, 
but only 59% answered the problem below correctly. The most common error was to use 
division inappropriately.  
 

One kilogram of detergent is used in making 15 kilograms of soap. How much 
soap can be made from .75 kilograms of detergent? (Graeber & Tirosh, 1988, p. 
264) 

 
Example 2:  
Harel et al. (1994, p. 376) reported that less than 60% of 293 preservice and 167 in-service 
elementary teachers solved word problems involving products like 0.75 x 0.62 correctly. The 
researchers did not provide the exact word problems they used, but an example word problem 
follows. 
 

A sea turtle swims 0.62 kilometers in ten minutes. A second sea turtle swims 0.75 
the distance that the first turtle swam. How far did the second turtle swim?  
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Attribute 4b. Identifying Quotitive Division Situations 
 
Identifying quotitive division situations requires recognizing a quantitative structure in which one 
quantity is measured in terms of the other. A typical question is how many groups are formed 
when A objects (or units) are separated into groups of B objects (or units). In this case, one is 
measuring the group of A objects (or units) in terms of groups of B objects (or units). Again, A 
and B can be whole numbers, fractions, or decimals. Teachers are often able to identify quotitive 
division situations that involve whole numbers. The quotitive model with whole numbers can 
lead to the intuitive rule that the divisor should be smaller than the dividend (e.g., Harel et al., 
1994, p. 365). Past research has demonstrated that teachers have trouble constructing fraction 
division situations (e.g., Ball, 1990; Borko et al., 1992; Ma, 1999).  
 
Example 1:  
Harel et al. (1994, p. 376) reported that word problems violating the intuitive rule that the divisor 
should be smaller than the dividend were much more difficult for preservice and inservice 
teachers than problems that did not violate this rule. The researchers did not provide the exact 
word problems they used, but an example word problem follows. 
 

Roger is driving 320.6 miles to visit his brother. He has already driven 95.3 miles. 
How much of the trip has he completed?  

 
Attribute 4c. Identifying Partitive Division Situations  
 
Identifying partitive division situations requires recognizing a quantitative structure in which the 
quotient, a certain amount of one quantity, is associated with one unit of a second quantity. A 
typical question is how many objects (or units) are in each group when A objects (or units) are 
separated into B groups. Again, A and B can be whole numbers, fractions, or decimals. Teachers 
are usually very familiar with fair sharing that is partitive division with whole numbers, but they 
may not be aware that partitive division affords a special case of proportional reasoning. The 
partitive model with whole numbers can lead to three intuitive rules: (a) The divisor should be a 
whole number, (b) The divisor should be smaller than the dividend, and (c) Division makes the 
quotient smaller than the dividend (e.g, Harel et al., 1994, p. 365). Ma (1999) reported Chinese 
teachers’ use of the partitive model for fraction division, but both in her report and our own 
experience few U.S. teachers are familiar with these situations or the connection between 
fraction division and proportional reasoning.  
 
Example 1: 
Graeber and Tirosh (1988) reported that in a sample of 129 preservice elementary teachers most 
could write appropriate expressions for problems that conformed to the three intuitive rules 
discussed above, but only 34% generated an appropriate expressions for the problem below 
correctly. The most common error was to invert the dividend and the divisor (e.g., they wrote 12 
÷ 5).  
 

Twelve friends together bought 5 pounds of cookies. How many pounds did each 
get if they each got the same amount (Graeber & Tirosh, 1988, p. 265) 
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Example 2: 
Harel et al. (1994, p. 376) reported that word problems violating the first intuitive rule—that the 
divisor should be a whole number—were much more difficult for preservice and in-service 
teachers than problems that violated the second intuitive rule—that the divisor should be greater 
than the dividend. The researchers did not provide the exact word problems they used, but an 
example word problem follows. 
 

Jason is buying biscuits for his dog at the pet store. Biscuits are sold by the pound. 
If 6 biscuits weigh 0.67 pounds. How many biscuits will weigh 1 pound?  

 
Comments/Boundaries: 
The common practice of using “keywords” to select operations allows students and teachers to 
solve problems without examining relationships among quantities closely.  
 

Attribute 5: Fractions as Multiplicative Comparisons 
In general, a multiplicative comparison is formed by asking “How many times as great is one 
value than another?” or “What portion or fraction of one value is another?” (Thompson, 1994). 
These comparisons differ from additive comparisons which are formed by asking “How much 
more is one thing than another” or “How much less is one thing than another?” For example, 
suppose the heights of two boxes are 9 in. and 6 in. We can compare the heights multiplicatively 
by saying that one box is 1 ½ times the height of the other or that one box is 2/3 the height of the 
other. Alternatively, we can compare the heights additively by saying that one box is 3 in. taller 
than the other or that one box is 3 in. shorter than the other. Multiplicative comparisons can be 
formed using any real number—including whole numbers, proper fractions (including unit 
fractions), and improper fractions. It can be difficult to infer when a teacher has formed a 
multiplicative comparison. One indicator that a teacher has formed such a comparison is if he or 
she explicitly compares two quantities multiplicatively—for instance, by using phrases like 
“times as many.” One indicator that a teacher has not formed a multiplicative comparison is 
when he or she cannot make sense of a question that involves a multiplicative comparison: We 
have observed teachers have difficulty interpreting expressions such as “9/5 of the amount.”  
 
Example 1:  

 

A cyclist rides 75 miles in one day. Her friend drives 135 miles to meet her. How 
many times further did the driver travel than the cyclist?  

 
Answering this question correctly requires being able to conceive of the fraction 9/5 as 
describing a multiplicative comparison: The driver travels 9/5 times as much as the cyclist 
travels or 9/5 the distance that the cyclist travels. In our experience, teachers are more 
comfortable using whole numbers to make multiplicative comparisons than they are using 
fractions to make multiplicative comparisons.  
 
Comments/Boundaries: 
Using the key word “of” to recognize when to multiply by a fraction is not the same as forming a 
multiplicative comparison. Multiplicative comparisons are also important in proportional 
reasoning and show up as sub-attributes for the proportional reasoning test as well.  
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DTMR Attributes for Proportional Reasoning 
Joanne Lobato, Chandra Orrill, & Erik Jacobson 

  

Background: Teacher’s Knowledge of Proportional Reasoning 
As a field, our knowledge of teachers’ proportional reasoning is much less detailed than our 
knowledge of students’ proportional reasoning.  Research on teachers’ knowledge of ratios and 
proportions has primarily (a) reported cases in which teachers have struggled to understand 
concepts related to proportionality (e.g., Cramer, Post, & Currier, 1993); (b) bootstrapped models 
of students’ proportional reasoning to make sense of teachers’ understanding (e.g., Hull, 2000); 
or demonstrated increased subject matter knowledge as a result of professional development 
(Ben-Chaim, Keret, & Ilany, 2007).  At the outset of this project, we assumed that the extensive 
knowledge base on student capacities and misconceptions related to proportionality could form 
the foundation from which we constructed attributes and test items for teachers.  However, after 
writing an initial set of items and conducting item response interviews with teachers, we realized 
that we needed to investigate the resources teachers have for proportional reasoning that are not 
typically accessible to students.  We also wanted to better understand teachers’ capacities to 
build on students’ thinking and to enable the learning of essential mathematics by their students. 
 
Consequently, we conducted clinical interviews (Ginsburg, 1997) with 14 middle grades teachers 
from four school districts in Georgia in November 2009.  The protocol consisted of open-ended 
complex problems set in ecologically valid contexts, such as responding to:  (a) student 
reasoning, (b) a teaching situation, or (c) a question from a fellow teacher.  We have relied to a 
large extent on the resulting data to craft attributes and items for assessing teachers’ proportional 
reasoning.   
 
This document elaborates four attributes for proportional reasoning that form the foundation for 
the items on the DTMR proportional reasoning assessment form.  Table 1 summarizes these  
 

Attribute Sub-attributes 
Iterating and partitioning a composed unit 
Consolidating operations on composed units 
Making multiplicative comparison within measure spaces 

Covariation & 
Invariance 

Making multiplicative comparison across measure spaces 
Using composed unit reasoning to reinterpret a ratio as a 
fraction 
Using a multiplicative comparison to reinterpret a ratio as 
a fraction 

Connections 
between Ratios & 
Fractions 

Differentiating fraction and ratio operations 

Appropriateness (no subcategories) 

Forming a ratio-as-measure 
Interpreting the meaning of equality of ratios 

Ratios in Context 
as a Network of 
Related Quantities Making connection with linear functions 

 
Table 1. Proportional Reasoning Attributes and Sub-Attributes 
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attributes and the sub-attributes that contribute to each attribute.  Because three of the attributes 
are at a macro-level in terms of grain-size, we found it useful to identify subcategories 
corresponding to more micro-level understandings for those attributes.  Additionally, we use the 
sub-attributes as a tool for insuring that we assess each attribute in a variety of contexts.  For 
each attribute and sub-attribute, we provide a general description of the understanding, an 
example of reasoning that exhibits the understanding, and an elaboration of the variety of ways 
that limited understanding of the attribute can instantiate itself. 
 
While this document focuses on attributes related to ratios and proportions, woven throughout is 
an emphasis on quantitative reasoning (Smith & Thompson, 2008; Thompson, 1994).  A 
quantity is one’s conception of measurable features of objects, events, or situations (e.g., 
conceiving of distance, weight, how fast something travels, and so on).  Quantitative reasoning 
involves analyzing the quantities and relationships among quantities in a situation, creating new 
quantities, and making inferences with quantities.  Most of the attributes below depend on the 
presence of quantitative reasoning. 

 
Proportional Reasoning Attributes  

 

Attribute 1: Covariation and Invariance                      
 

According to Lamon (2007), proportional relationships involve the transformation of quantities 
in such a way that the mathematical structure is invariant.  Middle grades teachers should 
understand that when two quantities, w and z, are related proportionally, then the following two 
invariant relationships hold:  

• There is a constant of proportionality, k, by which wk = z for all corresponding values of 
w and z.  

• If w is increased or decreased by a factor of a/b, then z must increase or decrease by the 
same factor to maintain the proportional relationship.  

 
There is some correspondence between these two relationships and what Vergnaud (1983, 1988) 
calls “across-measure space reasoning” and “within-measure space reasoning,” respectively.  A 
measure space can be thought of as the range of values that a particular measureable aspect of a 
situation can take on.  For example, distance and time can be viewed as two measure spaces in a 
constant speed situation.  Learners may focus within measure spaces (e.g., by forming ratios of 
distance to distance and time to time) or coordinate quantities across measure spaces (e.g., by 
forming a ratio of distance to time).  While some researchers consider across-measure space 
strategies to be more sophisticated, according to a review of the everyday math literature on 
proportional reasoning, within-measure space reasoning is used much more frequently than 
across-measure space reasoning by practitioners working in everyday situations (Hoyles, Noss, 
& Pozzi, 2001). Thus, both types of reasoning are important.  
Although the across-measure space and within-measure space distinctions are useful, we focus 
on a smaller grain-size of understanding in this attribute document, specifically on two ways to 
form a ratio from the perspective of quantitative reasoning—the formation of composed units 
and multiplicative comparsions.  Teachers may form a ratio by joining or composing two 
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quantities to create a new unit, which in turn, can be operated upon by iterating, partitioning, or 
splitting (Lamon, 1994, 1995).  Alternatively, teachers may form a ratio as a multiplicative 
comparison of two quantities, by making a relative comparison of how many times as great one 
quantity is than another (Kaput  & Maxwell-West, 1994; Thompson, 1994).  While operations on 
composed units emphasize within-measure space reasoning, one can form multiplicative 
comparisons within or across measure spaces.  Additionally, there are within- and across-
measure spaces strategies that lack the quantitative reasoning component of either composed 
units or multiplicative comparisons, as is elaborated in sub-attributes 1A-1D below.  
 
If we focused on middle school students’ understandings (rather than on their teachers’ 
understandings), then we would make more prominent the distinction between non-ratio and 
ratio reasoning.  Research indicates that it is common for middle grades students to attend to a 
single quantity when reasoning in a proportional situation, which is known as univariate 
reasoning (Harel, Behr, Lesh, & Post, 1994; Piaget, 1952).  Other students may coordinate the 
quantities but fail to preserve the multiplicative relationship between them by making absolute 
rather than relative comparisons; hence reasoning additively (Noelting, 1980).  Although there 
were a few instances of additive reasoning in our clinical interviews, the teachers brought more 
conceptual resources to bear on the situations than their students.  Of greater issue were the 
nature, extent, and flexibility of the components of understanding of covariation and invariance 
elaborated in the four sub-attributes below.  
 
Attribute 1A: Iterating and Partitioning a Composed Unit                                  
 
The teacher with this understanding constructs a rudimentary form of a ratio by joining together 
two quantities into a single entity, called a composed unit, which, in turn, can be operated upon.  
A teacher can preserve the invariance of ratio by iterating (joining together replicates of a 
quantity to produce a partitioned whole) and partitioning the composed unit to find other 
equivalent ratios (separating a quantity into a specified number of equal parts while the quantity 
remains as a whole) (Lobato & Ellis, 2010).  Specifically, the teacher can find any whole-number 
iterates (e.g., tripling, finding 10 groups of, etc), partial groups (e.g., 1/4 of the composed unit), 
and any number of partitions (e.g., partitioning into 5 equal groups).  According to Lamon 
(1994), one’s “ability to think about a ratio as an invariant composite unit and work 
simultaneously with both its composite units in a double-matching process (covariance) 
illustrated the kind of understanding we would like them to have about the meaning of ratio and 
proportion” (1994, p. 112). 
 
It can be difficult to infer when a teacher has formed a composed unit as opposed to operating on 
each quantity separately.  This is because operating on a composed unit (e.g., by tripling it) is 
accomplished by operating on each of the constituent quantities (e.g., tripling each quantity).  
Indicators of joining two quantities mentally include (a) using some term such as “batch” to 
suggest an entity comprising two quantities and talking about operating on the “batch”; (b) 
regular juxtaposition of two quantities in written reports or in diagrams; (c) “coupling” gestures; 
and (d) verbally pairing the quantities.  
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Example.  Consider the following problem derived from a nursing study by Holyes, Noss, and 
Pozzi (2001):  
 

A drug comes in packets of 120 mg diluted in 2 ml of fluid. How much diluted 
drug should be administered for a dose of 300 mg?  

 
A teacher may solve this problem by first joining 120 mg and 2 ml into a composed unit, which 
we denote as 120:2.  She then partitions the unit in half to obtain a new 60:1 unit.  The 60:1 unit 
is iterated five times to arrive at 300:5, and the answer is 5 ml.  
 
Limited Understandings.  In our clinical interviews with teachers, we found instances of the 
following types of limited understandings related to this sub-attribute:  
 

• Teachers appeared to form a composed unit but only use whole number iterates.     
• Some teachers appeared to have formed a composed unit but only performed simple 

partitions, such as taking halves, and struggled with more difficult partitions, such as 
taking thirds.  

• A few teachers doubled or halved each quantity separately and did not provide verbal, 
written, or gestural evidence of joining the two quantities into a unit.  

• Finally, some teachers engaged in both additive reasoning and simple composed-unit 
reasoning (e.g., doubling and halving a composed unit) while working on a single task.  

 
Attribute 1B: Consolidating operations on composed units 
 
Sub-attribute 1B addresses the ratio understanding exhibited when a teacher combines iterates 
and partitions on a composed unit into a single factor a/b and uses multiplication or division to 
express the factor.  The formation of a composed unit (sub-attribute 1A above) is a foundational 
concept that is not, by itself, indicative of sophisticated ratio reasoning.  In fact, some researchers 
have referred to the formation of a composed unit as pre-ratio reasoning (Lesh, Post, & Behr, 
1988).  However, Lobato and Ellis (2010) argue that composed unit reasoning can support more 
sophisticated proportional reasoning by reflecting upon the number of groups that are created 
when iterating and partitioning and by combining quantitative operations, as indicated in the 
example below.  
 
Example.  Consider the following task from Lobato and Ellis (2010):  
	  

Begin with a ramp that is 3 cm high and has a base that is 4 cm long.  What is the height 
of a new ramp with a base of 5 cm and the same steepness as the original ramp?  

 
We describe two different approaches, one from Teacher A (who we infer has an understanding 
of sub-attribute 1A) and one from Teacher B (who we infer has an understanding of sub-attribute 
1B).  Teacher A realizes that the base of the new ramp is 1 cm more than the base of the original 
ramp.  She decides to find the height of a ramp with a base of 1 cm and the same steepness as the 
original ramp.  She partitions the 3 : 4 original ramp into 4 equal parts to obtain a 3/4 : 1 ramp 
(see Figure 1).  She then iterates and stacks the 3/4 : 1 ramp five times so that the base of the new 
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ramp is 5 cm.  The height new ramp is 15/4, or 3 ¾ cm, since it contains five ramps, each with a 
height of 3/4 cm (see Figure 2).  
 
 
 
 
 
         

Figure 1. Partitioning a 3:4 unit into 4 equal parts 
 
 
 
 
 
 
 

 
Figure 2. Iterating a ¾: 1 unit 5 times 

Teacher B consolidates all of the operations used by Teacher A into a single operation.  She 
realizes that 5 cm (the base of the new ramp) is 5/4 of 4 cm (the base of the original ramp).  This 
teacher can identify the factor 5/4 by reflecting on her use of iterating and partitioning (e.g., 5/4 x 
4 is the consolidation of 5 groups of ¼ of 4).  Once the teacher realizes that 5 cm is 5/4 x 4 cm, 
she can complete the problem by finding 5/4 x 3, which is 15/4 or 3 ¾ cm (see Figure 2).  
Teacher B’s reasoning provides support for the idea that one can maintain a proportional 
relationship by multiplying each quantity by the same factor a/b.  
 
Limited Understandings.  This sub-attribute was surprisingly challenging for the participating 
teachers in our interviews.  Some teachers could consolidate operations but only for whole 
number iterates.  Specifically a teacher would know that doubling and then tripling a composed 
unit is the same as multiplying that unit by a factor of six but would have difficulty working with 
fractional factors.  Other teachers could locate the correct factor, as the result of performing an 
arithmetic operation such as division, but could not link the factor to the consolidation of a 
composed unit.  Furthermore, some teachers were not sure that combining (adding) composed 
units was allowed in proportional situations.  
 
Attribute 1C: Making a multiplicative comparison within measure spaces                 
 
Another way to reason proportionally derives from a second conception of ratio, namely as a 
multiplicative comparison of two quantities.  In general, a multiplicative comparison is formed 
by asking “How many times as great as one value is another?” or “What portion or fraction of 
one value is another?” (Thompson, 1994).  This differs from an additive comparison (a non-
ratio) which is formed by asking “How much greater is one thing than another” or “How much 
less is one thing than another?”  For example, suppose the heights of two boxes are 9 in. and 6 
in.  We can compare the heights multiplicatively by saying that one box is 1 ½ times as tall as the 
other or that one is 2/3 the height of the other.  Alternatively, we can compare the heights 
additively by saying that one box is 3 in. shorter than the other or that one box is 3 in. longer than 

¾ cm 
 1 cm 

3 cm 

4 cm 

3 ¾ cm 

5 cm 

¾ cm 
 1 cm 
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the other.  If a multiplicative comparison remains constant as both quantities co-vary, then the 
situation is proportional.  Sub-attributes 1C and 1D examine comparisons that are made within 
measure spaces (e.g., heights to heights) and across measure spaces (e.g., heights to lengths), 
respectively.  Multiplicative comparisons can extend to whole numbers, unit fractions, proper 
fractions, and improper fractions.  

 
It can be difficult to infer when a teacher has formed a multiplicative comparison as opposed to 
simply finding a factor that relates two values (e.g., by division).  An indicator of a multiplicative 
comparison is the presence of quantitative reasoning, through a verbal description of comparing 
two quantities relatively, and through the interpretation of meaning of the resulting quotient in 
context.  
 
Example. Reconsider the nursing problem from sub-attribute 1A:   

 

A drug comes in packets of 120 mg diluted in 2 ml of fluid. How much diluted 
drug should be administered for a dose of 300 mg?  

 
A solution path using a multiplicative comparison within measure spaces would involve the 
teacher asking herself, “How many times as great as 120 mg is 300 mg?” and then determining 
that 300 is 2.5 times 120.  The teacher could then use her understanding of the invariance of this 
multiplicative comparison in proportional situations to find 2.5 x 2 ml, which is 5 ml.  
  
Limited Understandings.  We have identified the following limited understandings of this sub-
attribute from teachers in the clinical interviews:  
 

• Some teachers were able to form multiplicative comparisons only for whole number 
factors or for “easy” factors.  For example, in comparing 2 and 5, a teacher figured that 5 
is 2 ½ times greater than 2, but he had difficulty figuring out what portion 2 is of 5. 

• Teachers may find the correct factor linking a source and target number and use that 
factor with the other quantity in the ratio, but the factor appears to have been produced 
calculationally (e.g., by dividing) and without explicit evidence of quantitative reasoning 
(i.e., comparing how many times as large one quantity is than the other). 

• Additionally, teachers who find a factor, but who have not formed a multiplicative 
comparison, may have trouble interpreting the meaning of their factor (or quotient) in 
context, may have trouble with the order of division, or may have trouble with the 
interpretation of division in the context. 

 
Attribute 1D: Multiplicative comparison across measure spaces                   
 
With an understanding of this sub-attribute, the teacher can form a ratio as a multiplicative 
comparison across measure spaces and understand that the situation is proportional if the 
multiplicative comparison holds for all corresponding values of w and z.  This multiplicative 
comparison (of z to w) is the constant of proportionality, k, by which wk = z for all 
corresponding values of w and z.  The teacher consistently uses the constant of proportionality to 
support reasoning about proportions. 
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What separates the formation of a multiplicative comparison from simply finding a factor is the 
presence of quantitative reasoning.  One aspect of this quantitative reasoning is the relative 
comparison of two quantities.  In the case of the formation of a multiplicative comparison across 
measure spaces, another aspect of quantitative reasoning is what we call reasoning with units.  
Specifically, the teacher appears to understand that when one forms a multiplicative comparison 
across measure spaces, the comparison is between the values of the quantities, not the quantities 
themselves.  For example, it does not make sense to say how many times as much distance is 
there as time, but one can form a ratio to compare the amounts of distance and time.   

   
Example.  We return to the nursing problem one more time:  

 

A drug comes in packets of 120 mg diluted in 2 ml of fluid. How much diluted 
drug should be administered for a dose of 300 mg?  

 
This problem can also be solved by forming a multiplicative comparison of the measure of the 
ml of fluid (2 ml) to the measure of the mg of the drug (120 mg).  Specifically 2 is 1/60 of 120.  
To complete the problem, the teacher needs to maintain the same ratio of dilution by finding 1/60 

of 300, which is 5.  Finally, the teacher interprets the 5 in terms of the context:  the 5 refers to 5 
ml of fluid.  Notice that it doesn’t make much sense to ask, “How many times as much fluid is 
there as drug?”  We drop the units for the quantities, carry out the multiplicative comparison 
with the values of the quantities, and then reinterpret the result in terms of the context at the end.  
This often happens with across-measure space reasoning because two different types of units are 
being compared.  
 
Limited Understandings.  The limitations are the same as for sub-attribute 1C.  
 
 

Attribute 2: Connections between Ratios and Fractions               
 
This attribute involves making conceptual links between ratios and fractions.  For many middle 
grades teachers, the topics of ratios and fractions are compartmentalized rather than connected by 
an underlying form of reasoning.  This may be in part because textbooks isolate ratios from 
fractions (Clark, Berenson, & Cavey, 2003).  Furthermore, because ratios are typically expressed 
in fraction form in textbooks (e.g., as a/b), many teachers believe that “ratio” is just another 
name for “fraction” without realizing that ratios and fractions, although connected conceptually, 
do not have identical meanings (Clark, et al., 2003).  Therefore, this attribute is important 
because teachers need to understand the relationships between ratios and fractions so that they 
can facilitate the development of appropriate connection-making in children.  Although there are 
many connections among rational numbers and operations, we focus on three in this section—
reinterpreting a ratio as a fraction (with two different meanings) and differentiating between 
fraction and ratio operations and their quantitative meanings—because of their prominence in 
our interviews with teachers.  
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Attribute 2A: Using composed unit reasoning to reinterpret a ratio as a fraction 
 
The teacher with this sub-attribute understands that a ratio can be reinterpreted as fraction by 
treating the ratio as a composed unit, partitioning it to obtain a unit ratio, and then interpreting 
the unit ratio as a fraction.  The teacher is able to reinterpret a given ratio in relationship to some 
appropriate whole.  Such reasoning also supports the partitive meaning of division, which 
answers the question “How much of one quantity is associated with one unit of a second 
quantity?”  
 
Example.  This example is drawn from Lobato and Ellis (2010).  
 
Consider a salad dressing that is 2 parts vinegar to 5 parts oil. The ratio of vinegar to oil can be 
expressed as 2:5.  We seek to reinterpret this part-part comparison as a part-whole comparison, 
that is, as the fraction 2/5. To do this, we ask the question, “2/5 is two-fifths of what?” The 
vinegar and oil can be joined as a composed unit (Attribute 1A) to form one batch of salad 
dressing.  The ratio 2:5 will be maintained if the batch is partitioned into five equal parts.  
Because we are operating on a composed unit, we partition both the oil and the vinegar into five 
equal parts.  Partitioning the oil yields 1 of the original 5 parts of oil.  Partitioning the vinegar is 
a little more involved.  One can split both parts of vinegar into five equal portions and take one 
1/5 from each of the original parts of vinegar (see Figure 3). Understanding that this yields 2/5 
part vinegar in each portion relies on interpreting the fraction 2/5 as two one-fifths. 
Consequently, reinterpreting the ratio 2:5 as the fraction 2/5 means that a recipe of this salad 
dressing made with 1 part oil has 2/5 of one part of vinegar.  In sum, this reinterpretation of the 
ratio 2:5 as a fraction relies on thinking of the ratio as a composed unit (sub-attribute 1A). 
 
 
 
 
 
 

 
Figure 3. One-fifth of the batch is 2/5 parts vinegar and 1 part oil. 

 
Limited Understandings.  We were surprised to find that making connections between ratios 
and fractions was difficult for the teachers we interviewed, even those with the strongest 
mathematics backgrounds.   
 

• Some teachers implicitly treated ratios as identical to fractions symbolically and did not 
reinterpret the meaning of a ratio as a fraction.   

• Many teachers were unable to locate an appropriate whole that would allow them to 
reinterpret the ratio a:b as the fraction a/b of some whole.   

• Other teachers conceived of ratios and fractions as separate and thought it inappropriate 
to reinterpret a ratio as a fraction because fractions only express part-whole relationships 
while ratios can express part-part or part-whole relationships. 

 

Vinegar 

Oil 
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Attribute 2B: Using a multiplicative comparison to reinterpret a ratio as a fraction   
 
The teacher with this sub-attribute understands that a ratio can be reinterpreted as fraction by 
treating the ratio as a multiplicative comparison across measure spaces.  Specifically the teacher 
realizes that a ratio x:y can be interpreted to mean that x is x/y of y for each corresponding pair of 
x and y values. 

 
Example.  Reconsider the same salad dressing that is 2 parts vinegar to 5 parts oil.  There is a 
second way to reinterpret the ratio 2:5 as a fraction.  We begin by asking the same question, “2/5 
is two-fifths of what?”  Because the ratio 2:5 does not indicate the exact amounts of vinegar or 
oil used in a particular recipe, the dressing could use 4 cups of vinegar and 10 cups of oil, 6 
tablespoons vinegar and 15 tablespoons oil, ½ pint vinegar and 1¼ pints of oil, and so on. For 
each associated amount of oil and vinegar, we make a multiplicative comparison across measure 
spaces, by asking, for example, “4 is what portion of 10?”, or “6 is what portion of 15?”  The 
meaning of 2/5 as a fraction in this scenario is that, in each case, there is 2/5 as much vinegar as 
oil.  In sum, this reinterpretation of the ratio 2:5 as a fraction relies on thinking of the ratio as a 
multiplicative comparison (sub-attribute 1D).  
 
Limited Understandings.  In addition to the limitations that we identified for sub-attribute 2A 
above, many teachers were unable to identify one of the quantities in the ratio as an appropriate 
whole to use when reinterpreting a ratio (e.g., in the ratio 2:5, 2 is 2/5 of 5).  

 
Attribute 2C:  Differentiating fraction and ratio operations  
 
Understanding how arithmetic operations with ratios can differ from operations with fractions is 
the third important aspect of the connection between ratios and fractions.  For example, Mochon 
(1993) discussed examples when fraction addition proceeds differently from ratio addition.  
Consider a basketball player who throws two sets of 8 free shots. In the first set he makes 3, and 
in the second set he makes 4.  If we look at his total performance, his success is 7 out of 16 shots.  
Although this can be expressed in fraction form as 7/16, the ratio addition proceeded as (3:8) “+” 
(4:8) = (7:16), rather than as 3/8 + 4/8 = 7/8.  During interviews with teachers, we found that 
because ratios are represented symbolically as fractions, teachers invoked rules related to 
fractions (such as forming equivalent fractions, multiplying by a fraction equivalent to one, or 
adding fractions) without reinterpreting the meaning of the ratios as fractions or thinking about 
the “wholes” in the particular context.  
 



 

DTMR Proportional Reasoning Attributes       8/15/11           Lobato, Orrill, & Jacobson    10 
 

Example:  The following problem emerged during an interview with one teacher, and was 
perplexing for other teachers to whom we posed the dilemma:  
 

During professional development, one teacher shared with a colleague:  
 

I’m confused about something. Suppose that you have a small batch of salad 
dressing made from 2 parts vinegar and 5 parts oil. A typical problem is to ask 
students, how much vinegar we will need if a larger batch of the salad dressing 
has 15 parts oil. If can show students that the answer is 6 parts vinegar by 
thinking of 2/5 and 6/15 as equivalent fractions. Then the amounts represented by 
both are the same and 2/5 x 3/3 = 6/15 because 3/3 = 1.  

 
 
 

 
 
 

But if I think about 2:5 as a ratio and triple the batch of salad dressing, I get a lot more 
salad dressing, and I think I’m multiplying by 3 not 3/3.  

 
 
 
 
 

What would you say to this teacher? 
 
Several understandings are involved when interpreting these drawings:  
 
• In the top drawing, if the rectangles both represent the same whole, then multiplying 2/5 by 

3/3 means that quantitatively you are splitting each 1/5 into 3 equal parts (for a total of 15 
parts) and each of the two 1/5s into 3 equal parts (for a total of 6 parts).  

• If the “wholes” for both 2/5 and 6/15 are the same, then the amounts represented by 2/5 and 
6/15 will be the same.  In contrast, if both quantities in the ratio 2 parts vinegar to 5 parts oil 
are tripled, the batch or total amount of salad dressing is tripled. 

• In the top drawing, one can perform fraction operations, i.e., 2/5 x 3/3 = 6/15, but in the 
bottom drawing, one is performing a ratio operation (2/5 + 2/5 + 2/5 = 6/15).  

• The fraction and ratio drawings can be connected in several ways:   
o Consider the 5 boxes representing 5 parts oil in the bottom picture as the whole (and as 

the leftmost rectangle in the top drawing).  Then the vinegar (2 parts) is 2/5 of the whole 
(2 is 2/5 of 5).  Now consider all 15 boxes representing 15 parts oil in the bottom picture 
as the whole (as the rightmost rectangle in the top drawing).  Then the vinegar (6 parts) is 
6/15 or 2/5 of the whole (15 parts).  This interpretation assumes that the rectangles at the 
top represent different “wholes,” but the 2/5 is constant as 2/5 of the whole. (This is 
difficult for teachers because they often make an implicit assumption that the rectangles 
in the top picture represent the same amount).  
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o Alternatively, if we want the rectangles at the top to represent the same whole, then what 
whole is that?  It could be one part oil.  Then 2/5 of one part is the amount of vinegar that 
is needed to satisfy the recipe, and 6/15 of one part is the same amount of vinegar.  The 
link to the bottom drawing is that you can take the representation of 2 parts vinegar to 5 
parts oil and partition both quantities into 5 equal parts (as shown in Figure 3 above), to 
arrive at 2/5 of a part of vinegar being associated with each part of oil.  Similarly you can 
take the representation of 6 parts vinegar to 15 parts oil and partition both quantities into 
15 equal parts, to arrive at 6/15 or 2/5 of a part of vinegar being associated with each part 
of oil.  
 

Limited Understandings.  The situation in the example above was very challenging for teachers 
to make sense of in the interviews.  Perhaps teachers focused on the numerator and denominator 
as numbers that were both increasing rather than quantities.  As a result, they did not appear to 
realize that multiplying by 3/3 results in partitioning (rather than iterating) the quantity 
represented in the top drawing.  Additionally teachers had difficulty linking the two 
representations on the page because they were not able to locate an appropriate “whole” in the 
ratio drawing.  Specifically, they had trouble seeing the 15 small rectangles in the bottom 
drawing as a whole and interpreting the shaded rectangles as part of that whole.   

 
 

Attribute 3: Appropriateness 
 

We want teachers to determine whether or not a situation is proportional by looking for a “many 
to one” (or “many to some”) relationship that continues as the two quantities co-vary.  Too often 
adults as well as children rely on the following types of superficial cues to decide whether or not 
a situation is proportional: (a) if there are three numbers given and one number missing; or (b) if 
the situation involves key words such as “per,” “rate,” or “speed.”  Furthermore, teachers often 
misinterpret situations involving indirect proportions or situations that can by modeled as y = mx 
+ b as being proportional.  
 
Example. Consider the following task, from Cramer, Post, and Currier (1993):  
 

Sue and Julie were running equally fast around a track. Sue started first. When 
she had run 9 laps, Julie had run 3 laps. When Julie had completed 15 laps, how 
many laps had Sue run?  

 
According to Cramer, et al. (1993), 32 out of 33 preservice elementary teachers in a mathematics 
methods class inappropriately set up the following proportion to solve the problem: 9/3 = x/15 
and arrived at an incorrect answer of 45 laps.  When two quantities are related proportionally, 
they are in a “many-to-one” relationship that holds across values.  In the running context, there is 
also a “many-to-one” relationship:  We can think about Sue as having run 3 laps for each lap that 
Julie ran because 9 = 3 • 3.  However, this relationship does not continue.  When Sue runs one 
more lap, so does Julie, which means that Sue will have run 10 laps when Julie has run 4. The 
situation is linear but not proportional.  Consequently, when Julie has run 15 laps, Sue will have 
run 15 + 6 = 21 laps.  
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Limited Understandings.  Research from the Does It Work (DiW) project and from our DTMR 
interviews suggests that being able to recognize a situation as proportional is pivotal to 
proportional reasoning and is more difficult for teachers than we expected.  If the context 
explicitly mentions addition, then most teachers seem to realize that the situation is not 
proportional.  Problems that do not have such clear clues are harder.  Teachers often misinterpret 
situations involving inverse proportions as proportional as well as problems set in a motion 
contest such the track problem described above.  The DiW teachers could readily recognize a 
typical missing value problem as proportional when stated as an across-measure spaces problem.  
Linking within-measure space reasoning to the proportion algorithm was harder for some 
teachers.  The fact that we observed some teachers reasoning additively on a problem involving 
blocks on a balance scale suggests teachers, like students, may find geometric problems and 
problems involving scaling or similarity the most difficult to recognize as proportional.  

 
 

Attribute 4:  Ratios in Context as a Network of Related Quantities 
 
Comprehending quantitative situations involving ratios can be seen as relating two perspectives: 
(a) a measurable quantity (e.g., speed) can be experienced directly (e.g., a teacher can feel when 
he or she walks faster); and (b) the quantity can emerge when one constructs a ratio between two 
quantities (e.g., distance and time) (Confrey & Smith, 1995; Noble, Nemirovsky, Wright, & 
Tierney, 2001; Piaget, 1970; Thompson, 1994).  If these two perspectives are coordinated, then 
following four quantities form a network of quantities: the two quantities from which the ratio is 
formed, the emergent ratio as a single holistic entity (not just a coordination of two quantities), 
and a quantity (such as speed) that measures an attribute in the real world situation.  For 
example, the ratio of the height of a wheelchair ramp to the length of its base is a measure of the 
steepness of the ramp.  Four quantities are related—height, length, the ratio of height to length as 
a single entity, and steepness.   
 
The ability to conceive of a ratio in context as a network of related quantities involves the 
following three sub-attributes:  (a) forming a ratio-as-measure, (b) interpreting the meaning of 
equality of ratios, and (c) making connections with linear functions.  In the wheelchair ramp 
situation described previously, forming the ratio of the height of the ramp to the length of its base 
and understanding that the ratio measures the attribute of the steepness of the ramp is called 
forming a “ratio-as-measure.”  Rather than treating ratios only as representing numerical 
relationships, “ratio-as-measure” links a ratio to what it measures in a real-world context.  The 
notion of ratio-as-measure can be extended to recognize that a set of equivalent ratios can 
measure the same intensity of a given attribute.  Consider the wheelchair ramp again.  Suppose 
that we have a ramp with a height of 1 ft and base of 12 ft.  There are infinitely many ramps with 
the same degree of steepness (e.g., a ramp with a height of 6 in and base of 72 in; 3 ft and 36 ft; 8 
in and 96 in; and so on).  Furthermore, when we set any two of these ratios equal in a proportion 
(e.g., 6/72 = 8/96), an important part of understanding the meaning of equality in this situation is 
that the two ratio measure the same intensity of the attribute being measured (here, steepness).  
Finally, a set of infinitely many equivalent ratios can be expressed as a linear function of the 
form y = mx, and the meaning of m can be interpreted as the slope of the function and as a ratio-
as-measure.  In the wheelchair example, if x is the length of the base of a ramp and y is the 
ramp’s height, then the proportional relationship between the lengths and bases for ramps with 
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the same steepness can be expressed by y = 1/12x, where 1/12 is a ratio-as-measure of the 
steepness of the ramp.  Finally, the slope of 1/12 can be interpreted in the context in two ways 
(using ideas from Attribute 2): (a) the base of one of these ramps is always 1/12 the height; or (b) 
for a ramp with a base of length 1 unit (say 1 ft), then the height will be 1/12 ft, in order to 
preserve the steepness.   
 
Attribute 4A: Forming a ratio-as-measure 
 
A teacher with this understanding interprets the emergent quantity of a ratio in context as the 
measure of some attribute in a real-world situation.  For example, the ratio of orange concentrate 
to water is a measure of the oranginess of the juice.  The ratio of number of miles traveled to 
amount of gasoline used is a measure of gas efficiency.  A ratio that measures some attribute is 
referred to as a “ratio-as-measure” (a term coined by Simon and Blume, 1994).  Forming a 
“ratio-as-measure” involves two non-numerical processes: (a) isolating the attribute of interest 
from other attributes in the situation and (b) determining of the effect of changing various 
quantities on the attribute of interest (Lobato, 2008; Olive & Lobato, 2008).  Forming a ratio-as-
measure involves a network of related quantities.  In the gas efficiency example, the relevant 
quantities are distance traveled, amount of gasoline used, the formation of the ratio of distance 
traveled to amount of gasoline as a reified entity, and quantity of gas efficiency.  
 
Example.  In a study with preservice elementary teachers, Simon and Blume (1994) posed the 
ratio-as-measure task shown in Figure 4. Instead of asking teachers to calculate the slope of the 
ski ramp, Simon and Blume focused on the creation of a measure for steepness.  They found that 
most of the preservice teachers preferred the “height of the ramp minus the length of the base” as 
a measure of the steepness of the ramp than the “height divided by the length of the base.” 
 

 
Figure 4. Simon and Blume’s ski ramp task. 

 
Limited Understanding.  We found that two limited understandings were common in our 
interviews with teachers.  First, some teachers coordinated quantities in a static manner rather 
than forming a holistic structure.  Thus, they might say that a ratio measures the “amount of 
vinegar to oil” in a salad dressing recipe rather than the “taste” or “vinegary-ness.”  Other 
teachers expressed the belief that reasoning about taste (or some other attribute) is not essential 
or is superfluous to understanding the mathematical idea. 
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Attribute 4B:  Interpreting the meaning of equality of ratios  
 

A teacher with this understanding interprets the meaning of equality of two ratios (such as a/b= 
c/d) as indicating that both ratios measure the same intensity of the attribute being measured in 
the situation (such attributes may include speed, taste, density, gas efficiency, etc.) (Harel, Behr, 
Lesh, & Post, 1994).  Furthermore each ratio is conceived of as an instantiation of a single rate, 
and the equal sign is conceived of relationally as meaning that each side of the equation has the 
same value (Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006).  Thus, a sophisticated 
understanding of the equality of the ratios a/b and c/d involves a complex network of related 
quantities—a, b, c, d, the ratio a/b as a quantity, the ratio c/d as a quantity, and some attribute 
being measured in the situation (such as speed or taste).  In a limited understanding of the 
equality of two ratios, a teacher may only deal with four (extensive) quantities— a, b, c, and d,—
coordinating them by reasoning that “a is to b as c is to d”; thus, failing to form the ratios a/b and 
c/d as entities in their right, whose values can be the same and can be seen as measuring the same 
intensity of some attribute in the situation.  

 
Example.  Consider the following proportion that arises out of a salad dressing context similar to 
the one presented above: .  What does the equal sign mean in this context, namely what is 

equal?   
The equal sign indicates that the two batches of salad dressing (one made from 2 parts vinegar 
and 3 parts oil and the other made from 10 parts vinegar and 15 parts oil) are equally “vinegary,” 
meaning that they will taste the same.  To understand why this is the case, we reinterpret the 
ratios 2:3 and 10:15 as fractions using composed units (using sub-attribute 2A).  One meaning of 
2:3 as the fraction 2/3 is that a recipe made from 2/3 cup vinegar and 1 cup oil will maintain the 
2:3 ratio, thus preserving the taste.  Similarly, the ratio 10:15 can be reinterpreted as a fraction:  
A salad dressing made from 10/15 cup vinegar and 1 cup oil will preserve the 10:15 ratio and 
will taste the same as the original recipe.  To establish that 2/3 cup is equal to 10/15 cup, we can 
partition a full cup into 3 parts and then partition each of those parts into 5 smaller parts.  This 
creates three equal parts, each containing 5/15 cup.  Each group of 5 one-fifteenths is equal to 
1/3 cup which implies that 2/3 cup (1/3 + 1/3) is equal to 10/15 cup (5/15 + 5/15).  
 
Limited Understanding.  In our interviews, we found that our participants were often unable to 
articulate a meaning of the equal sign in a proportion.  For those teachers who did articulate a 
meaning, we found the following limited conceptions:  
 

• Some teachers conceived of one ratio as a whole number iterate of the other, i.e., one 
ratio is a “subset” of or is “contained” in the other. 

• Others implicitly treated ratios as identical to fractions (symbolically), without a 
conceptual reinterpretation from ratios to fractions, and consequently applied rules for 
obtaining and simplifying equivalent fractions. 

• Some teachers focused on operations to each quantity in the ratio without saying what 
was equal and without treating the ratio as an entity. 

• Equality was also conceived as a “comparison point,” e.g., it prompted some teachers to 
compare two ratios.  For example, in the statement “2 is to 5 as 6 is to 15,” the “as” was 
understood to mean “the same as.”  This conception allowed teachers to keep both 



 

DTMR Proportional Reasoning Attributes       8/15/11           Lobato, Orrill, & Jacobson    15 
 

quantities separate instead of conceiving of the ratio as a single quantity.  This may play 
into the notion of fractions and ratios as separate. 

 
Attribute 4C:  Making connections with linear functions 

 
A teacher with this understanding can conceive of y = mx as a statement of proportionality where 
corresponding values of x and y are related multiplicatively by m, the slope of the function.  
Indeed, Karplus, Pulos, and Stage (1983) characterized proportional reasoning as “a term that 
denotes reasoning in a system of two variables between which there exists a linear functional 
relationship” (p. 219).  Connecting proportionality with linear functions (of the y = mx form)  
involves understanding a network of related quantities—the quantity of the independent variable, 
the quantity of the dependent variable, the formation of a ratio of independent to the dependent 
variable (i.e. y/x = m), and the interpretation of m as measuring some quantity in the real world 
situation.  
 
Example.  Consider the following task for teachers:  
 

Your school district material introduces algebra by asking students to write 
equations for proportional situations such as the following:  
 

A cola recipe uses 1 ½ ml of cinnamon oil for every 3 ½ ml of 
orange oil. Write an equation to find the amount of cinnamon oil that 
is needed, given any amount of orange oil.  
 

How would you like students to approach this problem?  
 
A teacher with an understanding of sub-attribute 4C might first think about the relationship 
between the amount of cinnamon oil and the amount of orange oil.  This could result in the 
formation of a multiplicative comparison between the two quantities.  Specifically, the teacher 
might ask herself, “1 ½ ml is what part of 3 ½ ml”?  Three and ½ ml can be conceived of as 7 
halves, and 1 ½ is 3 halves.  Thus, the amount of cinnamon oil is 3/7 the amount of orange oil.  
Because this is a proportional situation, the relationship holds for any amount of cinnamon oil (y) 
and an associated amount of orange oil (x).  Hence y = 3/7x.   

 
Limited Understandings. We identified the following limited understandings of this sub-
attribute from teachers in the clinical interviews and from prior research on algebraic reasoning:  
 

• Several teachers didn’t think it was necessary to have an x and a y in an equation 
representing a proportion.  For instance, one teacher appeared to form a composed unit in 
a proportional situation (e.g., a 10:4 unit in a speed situation where 10 represents 10 cm 
and 4 is 4 sec) and then reasoned that she could maintain the proportional relationship by 
multiplying each quantity by the same number (x).  Thus, she expressed her equation as 
10x = 4x.  

• Some teachers arrived at a correct equation of the form y = mx, but did so using the 
proportion algorithm.  For example, for the Cola Problem above, a teacher may set up the 
proportion 3.5/1.5 = x/y and then manipulate the proportion algebraically to arrive at the 
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equation 3.5y = 1.5x and then y= 1.5/3.5x and finally y = 3/7x (where x is the amount of 
orange oil and y is the amount of cinnamon oil) but not be able to interpret the meaning 
of 3/7 in the cola situation.  

• Teachers, like students, may also experience difficulties interpreting the meaning of 
literal symbols, e.g., treating them like abbreviations or labels rather than as varying 
quantities (Kilpatrick, Swafford, & Findell, 2001; MacGregor & Stacey, 1997).  For 
example, in the Cola Problem, a teacher may erroneously report the equation as 3/2C = 
7/2O, and treat C and O as labels (e.g., C for cinnamon) rather than as amounts.   
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