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Abstract
Decades of research have established that solving geometry proof problems is a challenging endeavor for many students. 
Consequently, researchers have called for investigations that explore which aspects of proving in geometry are difficult and 
why this is the case. Here, results from a set of 20 interviews with students who were taught proof in school geometry are 
reported. Students who earned A or B course-grades in the proof unit(s) were asked to share their thinking aloud while 
solving two proof tasks using smartpens. Student thinking was analyzed for two subgroups—students who were successful 
with both proofs (n = 7) and who were unsuccessful with both proofs (n = 13). Large differences were observed in how often 
students in the two groups exhibited certain competencies and behaviors. The largest gaps occurred in the ways in which 
students attended to the proof assumptions, attended to warrants in their proofs, and demonstrated logical reasoning.
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1  Introduction

Although geometry has historically been a starting point to 
teach and learn mathematical proof in secondary mathemat-
ics (Reiss, Hellmich, & Reiss, 2002), the teaching of proof 
in geometry has been called a failure in almost all countries 
(Balacheff, 1988).1 This claim is supported by an abundance 
of evidence (see, e.g., Healy & Hoyles, 1998; Reiss, Klieme, 
& Heinze, 2001; Senk, 1985). Yet, when we view proof con-
struction as a problem-solving endeavor (Schoenfeld, 1992; 
Weber, 2001), these results are unsurprising. After all, prob-
lem solving is demanding on both teachers and students 
(Schoenfeld, 1992), and geometry proof problem solving, 
in particular, is hard (Koedinger & Anderson, 1990).

The widespread lack of success in this area was acknowl-
edged in Battista’s (2007) review of school geometry 
research, where he posed several unanswered questions 
related to students’ learning of proof in geometry, includ-
ing: Why do students have so much difficulty with proof? 
What components of proof are difficult for students and 

why? and How can proof skills best be developed in stu-
dents? (pp. 887–888). Ten years later, speaking back to 
these questions in their research review, Sinclair, Cirillo, 
and deVilliers (2017) concluded that while some researchers 
have attempted to address these questions, more research is 
needed on students’ development of geometry proof skills 
and their understanding of the nature of proof. To make 
progress on these unanswered questions, we sought to iden-
tify competencies displayed by high-attaining students as 
they attempted to solve geometry proof problems using 
smartpens.

2 � Theoretical framework

2.1 � Competencies for problem solving

Much of Schoenfeld’s work on problem solving has been 
situated in the content domain of geometry where he often 
focused on “geometric proof problems” to illustrate his 
ideas (see, e.g., Schoenfeld, 1985, 1992). In a discus-
sion of resources that can contribute to an individual’s 
problem-solving performance in a particular mathematical  *	 Michelle Cirillo 

	 mcirillo@udel.edu

1	 University of Delaware, Newark, USA
2	 West Chester University of Pennsylvania, West Chester, USA

1  Our interpretation of this claim is not that there are some countries 
teaching proof well, but, rather, that not enough documentary evi-
dence to support a claim that teaching proof is a failure in all coun-
tries exists.

http://orcid.org/0000-0001-8513-4929
http://crossmark.crossref.org/dialog/?doi=10.1007/s11858-021-01221-w&domain=pdf


	 M. Cirillo, J. Hummer 

1 3

domain for problem solving, Schoenfeld (1985) framed the 
notion of “relevant competencies” by asking: “What math-
ematical knowledge does the individual have that he or she 
might be able to bring to bear on a given problem?” (p. 
59). Following Döhrmann, Kaiser, and Blömeke (2012), 
who connected mathematics competencies to the content 
and cognitive domains described in TIMSS, here we draw 
on the TIMSS framework to operationalize our use of the 
term “competencies.”

Our operationalization of “competencies” for geometry 
proof problem solving encompasses the three cognitive 
domains outlined in the TIMSS 2015 Assessment Frame-
work. In their description of the framework, Mullis and 
Martin (2013) suggested that a range of cognitive skills 
could be described within the domains of knowing, apply-
ing, and reasoning. Due to space limitations, in summariz-
ing these three domains, we focus on Mullis and Martin’s 
examples and descriptors that are situated in the content 
domain of geometry.

Knowing includes recalling definitions and geometric 
properties, classifying shapes by common properties, 
retrieving information from various sources, and recogniz-
ing shapes and entities that are mathematically equivalent 
(e.g., different orientations of simple geometric figures). 
A knowledge base is important because facility in reason-
ing about mathematical situations depends on familiarity 
with mathematical concepts, symbolic representation, and 
spatial relationships.

Applying involves the application of mathematics in a 
range of contexts. In this cognitive domain, students apply 
mathematical knowledge of facts, skills, and procedures. 
Applying includes determining appropriate strategies and 
methods of solution and implementing strategies to solve 
problems involving familiar mathematical concepts and 
procedures.

Reasoning involves logical, systematic thinking, 
including making logical deductions based on specific 
assumptions and rules. Reasoning includes the following 
cognitive skills: analyzing relationships, integrating and 
synthesizing different elements of knowledge, evaluating 
problem-solving strategies and solutions, drawing conclu-
sions based on information and evidence, and justifying a 
strategy or solution.

Our use of the term competencies, therefore, includes 
cognitive skills from the mathematics cognitive domains 
of knowing, applying, or reasoning. Competencies may 
be, and often are, comprised of some combination of skills 
from these domains (e.g., knowing the definition of con-
gruent triangles and applying this knowledge to write a 
congruence statement about a particular pair of triangles).

2.1.1 � Research on the role of knowledge in problem 
solving

Some researchers have explored the role of knowledge in 
solving proof problems. For example, Kantowski (1977) 
found that students who committed geometry definitions and 
theorems to memory more easily activated these justifica-
tions for their proofs. Definitions and theorems not commit-
ted to memory were used less often even though students 
were given a reference sheet of these ideas. In contrast to 
Kantowski, who discussed domain knowledge in a binary 
way (i.e., students either had the knowledge or they did not), 
Schoenfeld (1985) described knowledge as sometimes being 
“shaky” (p. 57). In other words, some of the “knowledge” 
that an individual brings to a problem situation may be 
incorrectly remembered or simply wrong, and therefore has 
the potential to sabotage a solution. Still, Mamona-Downs 
and Downs (2005) claimed that students can do well with a 
knowledge test but then perform poorly with the associated 
problem-solving tasks. In other words, simply having the 
knowledge is insufficient. They suggested that knowing how 
to apply one’s knowledge is at least as important as actually 
possessing the knowledge itself.

2.2 � Competencies for geometry proof problem 
solving

Problem solving expertise is often determined by studying 
“experts”—individuals or groups of individuals who exhibit 
superior performance in problem solving—such as math-
ematicians or students who excel in mathematics (Weber & 
Leikin, 2016). For example, Koedinger and Anderson (1990) 
claimed that “detailed study of successful performance in 
difficult task domains can provide a strong basis for under-
standing the processes of problem solving and the nature 
of thought in general” (p. 511). Through their observations 
of “experts” engaged in geometry proof problem solving, 
Koedinger and Anderson (1990) found that prior to writing 
up the details of their proofs, experts tended to quickly and 
accurately develop an abstract proof-plan that skips many of 
the steps required in a full proof. In other words, experts first 
applied global thinking (i.e., considered the “big picture”) 
rather than local thinking (i.e., worked on one step at a time) 
at the start of the process. This is consistent with findings 
from Cai’s (1994) study of problem solving in geometry: 
more-experienced participants spent the majority of their 
time on orientation and organization, while less-experienced 
participants spent the majority of their time on execution 
(i.e., doing rather than thinking or planning).

In addition to considering the general approach of 
experts, specific competencies for proving in geometry, 
such as the ability to read and work with diagrams (Sin-
clair, Pimm, & Skelin, 2012) and draw valid conclusions 
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(Cirillo & Hummer, 2019), have been identified in the lit-
erature. Problematically, students often apply a perceptual 
proof scheme (Harel & Sowder, 2007) and incorrectly draw 
conclusions based on what looks to be true in the diagram 
rather than applying reasoning to the “Given” information 
(Cirillo & Hummer, 2019). The idea that we should and 
can explicitly teach important competencies, for example, 
how to read and work with diagrams and draw valid conclu-
sions from the proof assumptions, is related to Senk’s (1985) 
suggestion that we should aim to teach students to begin a 
chain of reasoning. Success with proof also requires a basic 
understanding of the role of logic in proving.

Definitions of proof tend to, at least implicitly, suggest a 
logical structure to the proof argument. For example, Movs-
hovitz-Hadar’s (2001) description of proof, which is the one 
adopted for this study, implicitly communicates that a proof 
is a logical argument:

…an ideal mathematical proof displays in a systematic 
way a finite sequential set of statements that leads from 
definitions, axioms (i.e., statements the truth of which 
is unquestioned in a given theory) and theorems (i.e., 
statements the truth of which has already been proved) 
to a conclusion, in such a way that as long as the axi-
oms are accepted and the definitions are agreed upon, 
the conclusion is inevitable and its validity must be 
recognized. (p. 585).

Logic can be observed in the chains of reasoning, or sub-
arguments, that make use of two or more definitions or theo-
rems (e.g., If lines are perpendicular, then angles formed 
are right angles; if angles are right angles, then they are 
congruent). Sub-arguments—“branches” or portions of the 
larger proof argument—are structured by the Law of Syllo-
gism (Cirillo et al., 2017). As students plan or work through 
the details of a proof, their use of logic may be evident in a 
variety of ways. For example, students’ deductive explana-
tions might contain logical connectives such as “because” 
and “so” (Donaldson, 1986). Movshovitz-Hadar’s descrip-
tion of proof also highlights the importance of knowledge 
about warrants used in a proof (i.e., definitions, axioms, and 
theorems).

3 � Research goal and research questions

We sought to gain insight into the competencies enacted 
while students engaged in geometry proof problem solv-
ing. In this study, “competencies” are comprised of skills 
from the three cognitive domains of knowing, applying, and 
reasoning described in Sect. 2.1, including combinations of 
these skills. To identify such competencies, high-attaining 
students were asked to share their thinking aloud while using 
smartpens to solve two geometry proof problems. The data 

also prompted us to consider behaviors, which we view as 
being different from competencies. We posed the primary 
research question: What competencies were observed dur-
ing clinical interviews of high-attaining students as they 
worked to solve geometry proof problems using smartpens? 
A secondary question was also explored: What behaviors 
were observed, particularly in the absence of proof-related 
problem-solving competencies?

4 � Methods

4.1 � Research context

The study reported here is part of the research project: Proof 
in Secondary Classrooms: Decomposing a Central Math-
ematical Practice (PISC; PI: Cirillo). The goal of the PISC 
project is to better understand the difficulties involved in 
the teaching and learning of proof in secondary geometry 
and to develop a new and improved intervention to address 
these challenges.

Students who earned high marks (grades of A or B) in the 
geometry proof unit(s) were selected for individual clinical 
interviews for this sub-study. The rationale for interview-
ing students with high marks was to understand what high-
attaining students were taking away from the proof unit(s). 
We hypothesized that challenges identified for high-per-
forming students would likely be challenges for all students. 
Because past studies have shown that even high-attaining 
students struggle with non-routine as well as routine proof 
problems in geometry (see, e.g., Healy & Hoyles, 1998; 
Cirillo, 2018), two proof tasks that, in theory, should have 
been familiar to the students, were selected. We chose tri-
angle congruence proof as a topic for exploration because 
it is considered to be a central concept in school geometry.

4.2 � Setting and participants

Four sub-urban racially and economically diverse school 
districts in the mid-Atlantic region of the United States par-
ticipated in the PISC interview study. Interviews were con-
ducted during Years 2 and 4 of the study. Criteria for partici-
pant selection included: (1) students earned an A or a B in 
the proof unit(s); (2) students were identified by their teacher 
as people who would be willing to share their thinking aloud 
during the interview; (3) students completed the full inter-
view protocol in the allotted time; and (4) there were no 
technology glitches during the data collection.2 This process 
reduced the sample size from 31 students interviewed to 23.

2  A small number of data glitches occurred with the smartpen tech-
nology.
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Participants were enrolled in a course that addressed 
proof in geometry. Because coverage of this topic varies by 
district and curriculum program, the age and grade levels 
of participants varied. More specifically, younger students 
in the study were enrolled in Grade 8 Honors Geometry; 
while many of the older students were enrolled in an inte-
grated math course that covered proof in year 2 or 3 of high 
school. Thus, participating students spanned Grades 8–11 
(ages 13–17). The extent to which proof was covered varied 
by site, but, minimally, all participants had instruction in 
triangle congruence proofs.

4.3 � Interview protocol and data collection

The full interview protocol consisted of seven items. The 
first item was a simple “warm-up” task about geomet-
ric notation. The next four tasks, which targeted different 
aspects of proof, were adapted from Cirillo and Herbst 
(2011). The last two tasks were selected for this analysis 
because they were the only full-proof tasks (see Fig. 1). Stu-
dents spent an average of 7.28 min on Task 6 and 5.95 min 
on Task 7. They were asked to read each task aloud to ease 
them into thinking aloud and to guarantee they had read the 
“Given” statements.

Smartpen technology (i.e., Livescribe pens) was used to 
audio-record students’ explanations of their thinking and 
capture their pen strokes as they worked through the proofs. 
This methodology allowed us to capture student thinking in 
the form of verbal explanations and simultaneous diagram 
markings and other written work.

4.4 � Data and analysis

Smartpen data were digitized to create a “pencast,” or video, 
that simultaneously replays each student’s handwriting and 
the audio-recording (Livescribe, 2012). As the video plays, 
“active ink” is displayed on the screen in green in a way 
that syncs with the user’s pen strokes. The inactive ink can 
also be seen in the video image, but it is grayed out until 
it becomes “live.”3 All interviews were transcribed. Hard-
copies of the students’ work, recorded on special paper 
required for the smartpen, were catalogued.

Prior to analyzing the smartpen data, students’ final 
proofs were quantitatively scored from the paper hardcopies 
in ways that followed Senk’s (1983) methods. Specifically, 
we adapted Senk’s full-proof rubrics,4 scoring each proof on 
a scale of 0–4. Following Senk’s approach, if students scored 
a 3 or a 4 on a proof, they were considered to be Successful 
with the Proof task (abbreviated as SP). Students who scored 
less than 3 were considered Not successful with the Proof 
task (abbreviated as NP). Students scored a 3 if their proof 
steps followed logically from previous ones but contained 
minor errors (e.g., notational errors, vocabulary, or names 
of reasons).

Students were sorted into three categories: those who 
were not successful on either task (n = 13); those who were 
successful in solving one of the two tasks (n = 3); and those 
who were successful in solving both tasks (n = 7). Because 
we expected that the three partially successful provers would 
demonstrate a combination of results that overlapped with 
the results of SPs and NPs, we did not include their data in 
the next round of analysis.5 This decision resulted in a data 
set comprising of two Proof Task Interviews (PTIs) from 20 
students. The units of analysis are the individual proof task 
interviews, resulting in 40 units of analysis.

Analyses of the interview data occurred in phases. We 
used constant comparative analysis (Boeije, 2002) to develop 
a codebook and followed Creswell and Poth’s (2016) pro-
cedures for reliability of intercoder agreement in qualita-
tive research. Specifically, the research team, consisting of 
the two authors and two other team members, watched the 
PTI pencasts for six participants for both Tasks 6 and 7. 
Beginning with SPs, codes were developed for observed 
competencies exhibited through spoken and written work 
as students engaged in geometry proof problem solving. 
We coded all 20 PTIs using the initial 23 codes. Due to 
the absence of many of the competencies identified in SP 

Fig. 1   The two proof tasks used in the study

3  This is useful information for viewing figures in the Findings.
4  Rubrics were included in Senk’s (1983) dissertation.
5  This hypothesis was confirmed when we coded these data later on. 
We chose not to include these details because they over-complicate 
the reporting of the findings and were not very enlightening.
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data, we then used open coding to develop additional codes 
for analyzing NP data. Because a low number of previously 
identified or other competencies were observed in the NP 
data, we, instead, developed codes to describe the most com-
mon behaviors that were observed (e.g., student reads the 
“Given” statement incorrectly). An initial reliability check 
was conducted by having three researchers code three PTIs. 
Although a high level of agreement was attained, the process 
resulted in some refinements of the codebook. Next, two 
researchers independently coded six additional PTIs. After 
garnering an 86.59% interrater reliability and reconciling 
incongruent decisions, the second author coded the remain-
ing data. This iterative process resulted in a total of 45 pos-
sible codes. The final phase of analysis involved looking for 
patterns and themes across the data.

5 � Findings

In reporting the findings, we first describe the most prevalent 
competencies observed for the students who were Success-
ful with both Proof tasks (SPs; n = 7). We also describe one 
notable behavior identified in the SP data. Coding was done 
in a binary way such that evidence was either found or not 
found for any given code for each of the 40 units of analysis. 
This allowed us to calculate percentages of occurrences for 
each code within each task for each student. Because mul-
tiple competencies were exhibited by a high percentage of 
SPs, we chose a threshold of 60% for the occurrences that 
would be reported. This allowed us to report out most of the 
features of SPs’ work, leaving out only a few codes which 
occurred less frequently. In order to efficiently present the 
most interesting findings, we combined some of the codes. 
Reporting on five competencies and one behavior occurring 
at least 60% of the time for SPs yielded six findings. The 
main coding categories are described at the beginning of 
each section and, the first five also appear in Table 2.

Regarding competencies and behaviors of students who 
were Not successful with either Proof task (NPs; n = 13), the 
data were more inconsistent. We first compare the results 
of NPs with SPs by reporting frequencies (as a percent-
age of total occurrences for each PTI) with respect to five 
competencies explored in the SP group. Table 2 provides a 
summary of the competencies and their frequencies for both 
groups. We then share three additional findings related to 
NPs’ behaviors.

5.1 � Observations of students who were successful 
with the proofs

5.1.1 � Students productively attended to the “Given” 
information

Productively attending to the “Given” information means 
that students, in some way, referred to the “Given” statement 
(versus ignoring it) and used it to make valid deductions. All 
seven SPs made productive and explicit use of the “Given” 
information for both tasks (i.e., 100% of the time). They did 
so either as they planned or began working on a proof. They 
explicitly identified the relevant mathematical objects from 
the assumptions (i.e., the “Given”). Examples are provided 
below for Tasks 6 and 7 (see Fig. 1) from P18 and P14,6 
respectively.

P18: So, the Given—you have triangle ABC and per-
pendicular bisector BD, that’s Given. So, now I know 
that BD is perpendicular to AC because of the defini-
tion of perpendicular bisector, and I know that also D 
is the midpoint.7
P14: First thing we know is that ABC and DE bisect 
each other at B. Why? Because it’s the Given. Next, 
well you know that B, B is the midpoint. Why? 
Because definition of line segment bisector…

In Task 6, after reading the “Given” aloud, P18 restated 
the assumption explicitly, saying, “So the Given…that’s 
Given.” He then applied the definition of perpendicu-
lar bisector to draw conclusions about perpendicular line 
segments and the midpoint of AC In Task 7, P14 read the 
“Given” aloud, and then restated it in his own words sub-
stituting AC with ABC . He then said, “Why? Because it’s 
given.” This is evidence that he used the “Given” to deduce 
his first claim in the next statement.

Each proof task included some type of bisector in the 
“Given.” SPs were clear about which bisector they were 
working with 100% of the time (e.g., line segment bisec-
tor). They explicitly applied this knowledge, indicating what 
specifically was being bisected, 93% of the time.

5.1.2 � Students used the diagram as a resource

Using the diagram as a resource means that students used 
the diagram in observable ways, such as marking it after 
making an accurate deduction, using it as a planning tool, or 
making valid assumptions about the diagram (e.g., noticing 

6  P14 refers to the 14th participant. P14–P20 were the SPs, and P1–
P13 were the NPs.
7  We “cleaned” up the transcripts slightly by removing “ums,” “uhs,” 
and so forth, for ease of reading.



	 M. Cirillo, J. Hummer 

1 3

vertical angles). All SPs accurately marked the diagrams 
for both proofs (i.e., 100% frequency). The smartpen tech-
nology enabled us to see noticeable differences in the ways 
this occurred. For Task 6, SPs marked the diagram in two 
distinct ways. Either they worked through the details of the 
proof, marking off congruent parts as they made their infer-
ences, or they marked the congruent parts, using the diagram 
as a checklist to show that they had proven the triangles 
congruent (see, e.g., Fig. 2).

When P15 wrote BD ≅ BD , he noted: “another thing that 
we can’t, we can conclude, not from the given, is that B, line 
segment BD is congruent to line segment BD because of the 
reflexive, reflexive axiom.” This claim and explanation com-
municate an understanding that some things are read from 
the diagram rather than the text.

For Task 7, three SPs seemed to immediately recognize 
how to solve the proof, so they explained a plan for the proof 
and marked the congruent parts immediately, prior to begin-
ning the proof (see P20’s work in Fig. 3). In effect, P20 
solved the proof before writing out the details:

Okay, write a proof. Given AC and DE bisect each 
other at B. Okay, I need to prove that AD is congru-
ent to EC. Well I mean, again we can do congruent 
triangles because since they bisect each other this is 
going to be congruent to that and this is going to be 

congruent to that [marked AB ≅ BC and DB ≅ BE ]. 
And I could use the vertical angles theorem to prove 
that is congruent to that [marked ∠ ABC ≅ ∠ CBE]. 
Okay, so I only need C-P-C-T-C to get the rest.

5.1.3 � Students identified their warrants as postulates, 
axioms, definitions, or theorems

When SPs wrote or articulated warrants (i.e., reasons for 
their statements), they typically indicated the typology in 
explicit ways 86% of the time. SPs appropriately connected 
claims to definitions 86% of the time, sometimes even stat-
ing exact definitions (79%). For example, for Task 7, P16’s 
explanation exhibits multiple important features:

And then off to the side [of the flow proof], we can say 
that angle ABD is, and angle CBE are vertical angles. 
Because they branch out from point B and they’re on 
either side. That’s because of the definition of vertical 
angles. And after this, we know that angle ABD is 
going to be congruent to CBE because of the theorem 
we’ve proven: If two angles are vertical, then they are 
congruent.

First, P16 was “reading” the existence of vertical 
angles from the diagram. He then described vertical 
angles before stating, “That’s because of the definition 

Fig. 2   P15’s proof of Task 6 Fig. 3   P20’s work on Task 7 prior to writing the proof details
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of vertical angles,” clearly establishing that the warrant 
is a definition. Next, he made a new claim, stated that the 
warrant was a theorem, and recited the theorem.

For both proofs, the concept of congruent triangles was 
critical toward developing a valid proof. All SPs wrote 
CPCTC (i.e., Corresponding Parts of Congruent Trian-
gles are Congruent) as the warrant for their triangle con-
gruence statements. When asked what this meant, 100% 
of SPs were able to articulate what CPCTC stood for or 
explain what it meant. In some cases, SPs were not sure 
what CPCTC stood for, but they were all able to explain 
what it meant, as was the case for P15:

P15: Um, C-P-C-T-C. Corresponding something, 
corresponding triangles are congruent.
I…I don’t remember it, but I do remember C-P-C-
T-C. So.
Interviewer: Can you tell me what it means? Just 
broadly?
P15: Oh, well the corresponding sides or angles of 
two congruent triangles are congruent.

So even though this student was unable to say what the 
acronym stood for, P15 was able to articulate a reasonable 
definition of congruent triangles.

5.1.4 � Students demonstrated that they were thinking 
in a logical manner

Students demonstrated that they were thinking in a logi-
cal manner as they talked through their thinking process. 
Specifically, as they thought aloud, SPs’ explanations 
contained logical connectives, such as “next”, “and then”, 
and “we can conclude”, in 93% of PTIs. The transcript 
excerpts from P18 and P14 in Sect. 5.1.1 and the excerpt 
from P16 in Sect. 5.1.3 are good examples of this. Logi-
cal connectives from these transcripts include: “So, now I 
know that BD is perpendicular to AC…” (P18); “Next, we 
have midpoint…” (P14); and “And after this, we know…” 
(P16). While working on Task 6, P20 used the logical 
connectives “then” and “so” in various ways:

So, we have this is congruent to that and we have 
that this is perpendicular to that so I guess we could 
use the right angles theorem to prove that these are 
congruent and then we could prove that this is con-
gruent by the reflexive property of congruence. And 
then we can get the angles congruent by C-P-C-T-C.

Although, in this more global explanation, P20 seemed 
to skip over the step of saying the triangles were congru-
ent, it was included in the written proof.

5.1.5 � Students attended to important details 
while working through their proofs

SPs attended to important details in their proofs in mul-
tiple ways. Specifically, they articulated a plan for their 
proof before writing it and attended to: rigor in their sub-
arguments, triangle congruent criteria, and the “Prove” 
statement in explicit ways. SPs articulated a plan for the 
proof before writing the proof 64% of the time. SPs con-
sistently attended to rigor in their sub-arguments 64% of 
the time. They attended to triangle congruence criteria in 
explicit ways 79% of the time. And they explicitly attended 
to the “Prove” statement 64% of the time.

In Sect. 5.1.2, the transcript from P20’s work in Task 7 
provides evidence of articulating a plan and attending to 
the Prove statement. P20 explicitly said, “I need to prove 
that AD is congruent to EC” and “we can do [this with] 
congruent triangles because” before explaining the rest 
of the plan. Also, in Sect. 5.1.3, P16’s work in Task 7 
demonstrates that he was attending to the vertical angles 
sub-argument by first establishing the existence of verti-
cal angles prior to applying the theorem: if two angles are 
vertical angles, then they are congruent.

P16’s work on Tasks 6 and 7 provides evidence of 
attending to sub-arguments and triangle congruence cri-
teria. His written work is very methodical in that he estab-
lished three congruent parts prior to drawing arrows in his 
flow proof to connect the three congruent statements to the 
triangle congruence statement:

Ok so then we have our three parts [draws arrows]. 
So, we know that these are congruent and then we 
can say that triangle ABD is going to be congruent 
to triangle C, CBE. [Pause] I had to take a moment 
there to see which point was corresponding with 
point A. So, then we have our two triangles. And we 
can say this, because of S-A-S theorem. And after 
this, we can use my favorite theorem again to say 
that line segment AD is congruent to line segment 
EC because of C-P-C-T-C. So yeah.

The smartpen allowed us to see how the student worked 
out the three congruence statements prior to writing and 
then drawing arrows to the triangle congruence statement. 
In Fig. 4, we can see that the student attended to rigor in 
the sub-argument when he split the assumption that BD 
was the perpendicular bisector into two branches—one 
that handled the fact that BD bisected AC , and one that 
addressed BD being perpendicular to AC . From the com-
bination of transcript and smartpen images, we can also 
see that he attended to triangle congruence criteria when 
he: said “we have our three parts,” drew three arrows from 
the three parts before writing the triangle congruence 
statement, and then paused to accurately state the triangle 



	 M. Cirillo, J. Hummer 

1 3

congruence statement in a way that matched up the cor-
responding parts.

In P18’s Task 7 work (Fig. 5), we can also see evidence 
of attending to sub-arguments and triangle congruence cri-
teria. From the “Given,” P18 drew one conclusion about B 
being the midpoint of two line segments. Yet, in order to 

demonstrate the three congruent parts of the triangle, she 
split off the congruence statements into two boxes even 
though she could have reasonably written them in a sin-
gle box as she did for the previous step. In this way, she 
showed that she had three pairs of corresponding congru-
ent parts. Also, she did not skip any important details as 
she wrote sub-arguments for line segment bisectors and for 
vertical angles. Another example of attending to details was 
observed when, after reading Task 7 aloud, P19 explicitly 
attended to the “Prove” statement as he worked through a 
plan for his proof:

Alright, so that would mean that B would be the mid-
point of AC and DE and that, and I can already see 
ahead that that probably means I’m going to have to 
prove this with congruent triangles cause, AD, I could 
see that AD and EC are corresponding.

Unlike in Task 6, where the end goal was scaffolded by 
asking students first to prove the triangles congruent and 

Fig. 4   P16’s work on Task 6

Fig. 5   P18’s proof of Task 7

Table 1   SPs’ use of pronouns

SP Task Example

15 6 “Okay, so what now we can conclude from that”
“You got to write out the entire theorem to be sure”

16 6 “Okay, so then we have our three parts”
“So, we know that”

15 7 “And we can also conclude”
20 7 “Well I mean, again, we can do congruent triangles”
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then to prove a pair of corresponding parts were congru-
ent, Task 7 did not explicitly prompt students to prove the 
triangles congruent. Thus, as P19 considered a plan for the 
proof, he clearly kept the end goal in mind.

5.1.6 � Students sometimes said you or we as they talked 
through their proof

The ways in which SPs used pronouns in their discourse 
was a noteworthy behavior (cf. competency). They used the 
pronouns you or we in 64% of the PTIs. Table 1 includes 
several examples.

It is interesting to note the ways in which some students 
switched pronouns as they were thinking aloud. For exam-
ple, in Sect. 5.1.5, P16 used we three times before pausing 
and saying, “I had to take a moment there to see which point 
was corresponding with point A.” He then resumed using we 
as he worked through his proof. Another interesting example 
comes from P15’s work on Task 6 when he said, “So we got 
one, one angle and then well, what also we can conclude 
is that angle, what we should have wrote instead of this—I 
should have wrote, would be…” In both cases, SPs used 
the we pronoun, and then they stepped out of using we and 
switched to I as they commented on a personal point of con-
fusion and an error, respectively.

5.2 � Observations of students who were not 
successful with the proofs

In Sect. 5.1, we shared five competencies and one behavior 
from the SP data. In this section, we expand on our findings 

by considering competencies and behaviors of students who 
were unsuccessful with the proofs.

5.2.1 � Students infrequently displayed the competencies 
observed in successful provers

Large discrepancies between SPs’ and NPs’ competencies 
were noted in the data. Table 2 includes frequencies of com-
petencies from the PTIs (as percentages) for both groups for 
each finding and sub-finding. The differences in occurrences 
of the five main competencies ranged from 35 to 92% with a 
gap of more than 75% for 3 of the 5 main findings (as indi-
cated in the table by *). When competencies were observed 
for NPs, they were similar in nature to what was described 
for SPs. However, as can be seen in Table 2, the percentages 
for NPs were typically quite low. Because there is little to 
say about the absence of something, for NPs, it is not so 
productive to go through each finding one-by-one. Instead, 
through three additional findings, we describe three behav-
iors observed in NPs’ data that document what NPs did in 
contrast to the observations made in the SPs’ data. Because 
the percentages of common behavioral occurrences were 
much lower in the NP data set, we chose a lower threshold 
of ≥ 20% for the findings that we discuss next.

5.2.2 � Students did not productively attend to the “Given” 
information

There were multiple issues noted in the ways NPs dealt with 
“Given” information. First, 23% of the time, NPs incor-
rectly stated the “Given” when they read it aloud. The most 

Table 2   Frequencies of 
observed competencies for both 
groups (as percentages)

*Indicates the main findings with the largest percentage gap between SPs and NPs (> 75%)

Observed Competencies (to nearest whole percentage) SPs (%) NPs (%)

Students productively attended to the “Given” information* 100 23
Students correctly identified bisectors 100 12
Students indicated what object was being bisected 93 12
Students used the diagram as a resource 100 47
Students marked the diagram
Students used the diagram as a check list or planning tool

100 65
100 46

Students made valid claims supported by assumptions about the diagram 100 31
Students identified warrants as postulates, axioms, definitions, or theorems* 86 8
Students clearly connected claims to definitions 86 12
Students stated or explained a definition 79 4
Students articulated a definition of congruent triangles 100 8
Students demonstrated that they were thinking in a logical manner* 93 8
Students attended to important details while working through their proofs 68 13
Students articulated a plan for the proof prior to writing the proof 64 15
Students consistently attended to rigor in sub-arguments 64 0
Students attended to triangle congruence criteria 79 15
Students attended to the “Prove” statement in explicit ways 64 23
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common error for both tasks was saying “line” rather than 
“line segment.” Also, 46% of the time, NPs omitted notation 
or information when they wrote the “Given” statement in the 
first line of the proof (see Table 3). P11, for example, who 
incorrectly wrote the “Given” for Task 6, omitted it com-
pletely for Task 7. After erroneously writing the “Given” 
for Task 7, P4 did not continue with the proof.

NPs did not refer to the “Given” past the second line 
of their proof 57% of the time even though they had not 
exhausted all possible inferences from it. In these cases, all 
lines written after Lines 1 or 2 of the proof seemed discon-
nected from the “Given.” For example, when asked about 
her proof of Task 6 (see Fig. 6), P3, who had not shared her 
thinking aloud while working, said:

I put that triangle ABC is, bisects BD ‘cause it’s the 
Given. And ABD is congruent to CBD because line 
segment BD bisects the two. And I put that angle A is 
congruent to angle C because D is the midpoint.

There are multiple interesting things about P3’s work. 
First, she wrote the “Given” statement incorrectly. Second, 
her statement in Line 2 did not identify which mathematical 
objects were congruent (e.g., angles or triangles) and did 
not seem to correspond with the assumption. Third, after 
“Given” in Line 1, the “Reasons” in the proof were written 
with respect to the diagram, rather than as general state-
ments, as warrants should be.

Another way that NPs struggled to use “Given” infor-
mation productively, was in their misidentification or 
vague use of mathematical objects in the “Given.” It was 
not uncommon for students to incorrectly state ∠ABD ≅ 
∠CBD in Task 6. As a reason, they tended to say or write 
something related to “bisect,” without clearly identifying 
whether the bisector was a perpendicular bisector, a line 
segment bisector, or an angle bisector. In fact, some stu-
dents seemed to interpret BD as a line of symmetry for 
ΔABC. Other students would simply write “Definition of 
bisect” as a reason for their claims (see, e.g., Fig. 7).

Finally, 39% of NPs seemed to use the diagram, rather 
than the “Given” to make their inferences. As discussed 
above, the most common occurrence of this was in Task 6. 
Students seemed to make claims about corresponding parts 
of the two triangles that looked congruent and then refer-
enced “bisect” or wrote reasons that did not seem logical 
or stem from the “Given.” For example, we can see that in 
P5’s proof of Task 6 (Fig. 8), P5 marked most of the poten-
tial corresponding parts congruent and wrote five congru-
ence statements; however, the warrants were not logical. 
Consequently, P5 earned 0 points on Task 6. On Task 7, a 

Table 3   Sample of NPs’ 
“Given” statements

“Given” for Each Task Student NPs’ First Statement of Proof
(with “Given” written as the Reason)

Task 6
Given: ΔABC with perpendicular bisector BD

P2 ABC with perpendicular bisector BD
P4 ΔABD ≅ BD
P11 BD perpendicular bisects AC

Task 7
Given: AC and DE bisect each other at B

P4 AC ≅ DE

P6 AC and DE ⟂ B

Fig. 6   P3’s proof of Task 6

Fig. 7   P12’s proof of Task 6
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few students wrote congruence statements about pairs of 
angles that could not be justified by the assumption.

5.2.3 � Students used vague warrants to justify their claims

NPs’ warrants were vague 62% of the time. They often did 
not identify warrants as postulates, definitions, or theorems 
and generally did not seem to know definitions of relevant 
concepts. For example, in Fig. 7, P12 wrote “Definition of 
bisect” as a reason for Line 3. Yet, in order for the corre-
sponding statement ∠ABD ≅ ∠CBD to be true, BD would 
have had to have been an angle bisector rather than a per-
pendicular bisector. Also, although the congruent segments 
statement in Line 4 is reasonable, the warrant references 
the particular diagram, rather than a definition. Similarly, in 
Fig. 9, P13 wrote “Definition of a bisector” as a reason for 
Lines 3 and 4 without identifying the type of bisector. P10′s 
proof of Task 6 (see Fig. 10) includes the warrant “Perp 
bisector” in Lines 3 and 4 without stating whether this is a 
definition, theorem, or something else.8

Another example of problematic warrants was observed 
with respect to the definition of congruent triangles. Only 3 
of 13 NPs used CPCTC in both proofs. Two of these three 
students were able to articulate a definition of congruent 
triangles. The remaining NPs did not write CPCTC or Defi-
nition of Congruent Triangles as a warrant in either proof. 
Only 4 of 13 NPs wrote the final Prove statements for both 
proofs. Three NPs did not write the final Prove statements 
for either proof. When students did write the Prove statement 
for Task 6, but did not state CPCTC as the reason, they left 
the reason blank or wrote other things such as “Opp. Int. ∠ ” 
and “Reflexive Property.” For Task 7, reasons supplied for Fig. 8   P5’s proof of Task 6

Fig. 9   P13’s proof of Task 7

8  Due to a technology glitch, P10’s markings in this diagram are off-
center but were sensibly placed on the paper.
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the final Prove statement included: “SAS,” “ASS,” and “B 
is midpoint.”

5.2.4 � Rather than using the pronouns you or we, NPs used I 
or did not use pronouns

In 69% of the PTIs, NPs used the pronoun I exclusively. 
Only 2 of 13 NPs used the generalizing pronouns you and 
we. Two students did not use any pronouns at all during the 
PTIs. The transcript from P3’s interview in Sect. 5.2.2 is an 
example of a student using I exclusively. In one example, 
P5 used all three pronouns as he talked through his proof of 
Task 6 (see Fig. 8):

Alright. Reflexive property. And so, you needed to 
prove that—we needed to prove two things. ABD is 
equal to CBD. So, angle D is ninety degrees. Because, 
wait. BD, wait. D is ninety because BD bisects AC at 
a straight angle.

Initially P5 used you and then switched to we. Once he 
became unsure, he switched to that and I. As mentioned 
earlier, this student earned a 0 on the proof. Last, below is 
an example from P11’s work on Task 6:

I’m also trying to remember definitions [laughs] of 
like angle bisector and what that definition was. Oh, 
it’s a perpendicular bisector. Oh. So that would mean 
it’s a perpendicular bisector. That would mean these 
two are right angles. Which would mean it’s also, so 
that would be side-angle. Because side is congruent 
to itself.

Here, P11 began explaining what I’m trying to remember, 
and then she started using it’s. In doing so, she no longer 
seemed connected to the proof.

6 � Discussion

The data from this study provide evidence that there was a 
discernible set of competencies influential in students’ suc-
cess with triangle congruence proof tasks, and that these 
competencies drew on a range of cognitive skills. These 
findings have implications for improving the teaching and 
learning of proof in school geometry, and potentially for 
teaching proof, in general. Although some of the compe-
tencies identified here overlap with recommendations in 
the literature, this study shows clear correlations between 
the presence or absence of particular competencies and 
students’ success or lack thereof in geometry proof prob-
lem solving. The largest differences occurred in ways in 
which students attended to proof assumptions, attended 
to warrants in their proofs, and demonstrated logical 
reasoning.

One way to think about problem solving is having the 
desire to get from the given state to the goal state, while 
at least initially, lacking a direct route to the goal (Mayer, 
1985). Looking across the findings, we saw differences 
in how SPs and NPs attended to the givens and goals in 
the PTIs. For example, while SPs attended to the “Given” 
information by referring to it explicitly and making valid 
deductions from it 100% of the time, this competency was 
only observed in 23% of NP-PTIs. Instead, NPs sometimes 
carried out perceptual proof schemes (Harel & Sowder, 
2007), seemingly drawing conclusions from the diagram, 
rather than the “Given” information, 39% of the time. At 
times, NPs incorrectly translated the “Given” statements 
into their proofs. In terms of the proof goal, there was a 
41% gap in the frequency of attending to the “Prove” state-
ments in explicit ways for SPs versus NPs. Related, SPs 
were much more likely to use the diagram as a checklist 
or planning tool and articulate a plan for the proof prior to 
writing the proof. Consistent with the findings of Koed-
inger and Anderson (1990) and Cai (1994), these findings 
indicate more of a global than local approach from SPs in 
the sense that SPs tended to be more focused on getting 
from the given state to the goal state; multiple SPs verbally 
stated deductions that supported moving from the “Given” 
to the “Prove” statements prior to writing up their proofs.

The competencies observed in the data were comprised 
of skills from all three cognitive domains: knowing, apply-
ing, and reasoning. Some of the largest percentage differ-
ences in competencies observed in the two groups were 
in the area of knowledge. For example, there was an 88% 
and 81% difference, respectively, in SPs’ versus NPs’ ten-
dencies to correctly identify bisectors (e.g., stating that a 
bisector is a line segment versus angle bisector) and indi-
cating what object was being bisected (e.g., a particular 
line segment versus an angle). This is important because, 

Fig. 10   P10’s proof of Task 6
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as noted by Herbst and Brach (2006), students’ engage-
ment with proving depends on their understanding of 
mathematical objects and relations involved in a problem. 
There was a 64% difference in the ways the two groups 
attended to triangle congruence criteria, which we con-
sider a combination of knowing valid triangle congruence 
conditions and applying them to the particular context. 
There was an 85% difference in how often NPs versus SPs 
demonstrated that they were thinking in a logical manner, 
which relates to reasoning.

The finding related to students’ identification of warrants 
as postulates, axioms, definitions, or theorems has an impor-
tant relationship to knowledge. SPs correctly identified the 
typology of their warrants 86% of the time compared to only 
8% of the time for NPs. Why does this matter? In Task 7, for 
example, students must determine, from the diagram (not 
the “Given”), the existence of vertical angles. This claim 
can be justified by the definition of vertical angles. A dif-
ferent claim about congruent angles can be made when one 
applies a theorem about vertical angles. Identifying the type 
of warrant, is therefore important because different claims 
are made when one applies the definition of a mathematical 
object versus a theorem about that mathematical object, of 
which there could be many. Also, NPs’ warrants were coded 
as being vague 62% of the time. NPs’ data also sheds light 
on the problem of students’ “shaky knowledge” (Schoenfeld, 
1985) in the area of bisectors. For example, stating as a rea-
son, “Perp bisector,” as P10 did, does not provide sufficient 
information about the warrant—was she referring to a theo-
rem or the definition of perpendicular bisector, or did she not 
know? Also, NPs sometimes wrote, as “Reasons,” particular 
statements about the diagram (see, e.g., Figs. 6 and 7) and 
did not seem aware that using warrants, written in general 
form, is the only valid way to justify claims.

Although we classified it as a behavior rather than a com-
petency, we were intrigued by students’ pronominal use. SPs 
were observed using pronouns we and you far more often 
than NPs. Instead, they often used I or it. Studies of pro-
nominal use in mathematical communication have demon-
strated the ways in which pronouns serve to code transac-
tional and interactional functions of speech, such as social 
positioning and communication of generalization (Pimm, 
1987; Rowland, 1992). For example, Pimm (1987) noted 
that teachers typically use we to represent the voice of the 
larger mathematical community. In contrast, Rowland (1999) 
posited that the use of it as a conceptual deictic enables 
students to say what they might not have been able to say 
otherwise. In this way, we hypothesize that perhaps NPs 
used it when they otherwise did not have the vocabulary to 
identify mathematical objects. Based on Pimm’s observa-
tions, we hypothesize that SPs’ use of we communicated 
conviction and confidence in their work which was not pre-
sent in NPs’ PTIs. SPs’ spoken utterances tended to follow 

the norm of mathematicians’ writing, described by Burton 
and Morgan (2000), in the sense that they most frequently 
used impersonal pronouns, while only occasionally using 
the pronoun I to state a personal preference, or, in the case 
of these students, to attend to an error or claim confusion.

With the exception of the findings about personal pro-
nouns, these findings suggest that there are things we can 
learn about what successful provers do that contribute to 
the knowledge base on solving proof problems, particularly 
in the area of geometry. These data suggest that it would be 
advantageous to find ways to explicitly teach the following 
competencies:

•	 How to draw conclusions from “Given” information
•	 How to mark diagrams and make valid assumptions 

about diagrams (e.g., the existence of vertical angles; 
see Cirillo & Hummer, 2019)

•	 How to support claims with warrants, knowing the kinds 
of warrants that are allowable in a proof and understand-
ing their differences

•	 How to logically proceed through a proof using one or 
more chains of reasoning, beginning with the “Given” 
information and ending with the “Prove” statement

•	 How to attend to important details in a proof, such as how 
to write up common sub-arguments

It is important to note that many of these competencies 
rely on declarative knowledge. Elsewhere, Cirillo and col-
leagues (2017, 2019) proposed ways in which teachers might 
engage students in some of these competencies in secondary 
classrooms, in many cases, teaching them explicitly before 
teaching proof. It is also important to note that the above list 
is not comprehensive; the proof tasks used for these inter-
views did not require students to engage in all aspects of 
proving, such as conjecturing or determining “Given” and 
“Prove” statements to prove theorems. Finally, we view the 
finding about pronominal use to be one of correlation rather 
than causation. That is, suggesting to students that they say 
we instead of I when sharing their thinking, will not inher-
ently make them better at proving.

7 � Conclusion

Clear differences were noted in the competencies exhibited 
by students who successfully solved the geometry proof 
problems, compared those who did not. These findings 
contribute to research on the teaching and learning proof in 
geometry, including the two topics posed in Battista’s (2007) 
review: What components of proof are difficult for students 
and why? and How can proof skills best be developed in 
students? Identifying students’ missteps and the competen-
cies executed by successful provers during geometry proof 
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problem solving is in important step in addressing these 
questions.

One recommendation for improving the field’s under-
standing of solving proof or other problems has been to 
study “experts” engaged in the process (see, e.g., Iannone, 
2009). A limitation of this study is that we relied on student 
grades to identify high-attaining students, a strategy which 
could be considered problematic given the potential sub-
jectivity of assigning courses grades (cf. Weber & Leikin, 
2016). Also, unlike the studies conducted by Kantowski 
(1977) and others who explicitly gave a knowledge test 
prior to executing their problem-solving protocols, we did 
not employ a strategy for discerning students’ knowledge 
outside of the interview process.

The methodological choice of using smartpen technology 
to observe problem solving contributes to the significance of 
this study. The technology allowed us to “see” and analyze 
these data in ways that we would not have been able to see 
without it. For example, the active ink feature in the pen-
cast videos allowed us to track the ways in which students 
marked their diagrams and shifted back and forth between 
diagram and proof. We conjecture that this kind of analysis 
is only the tip of the methodological iceberg in terms of 
what is possible to do with this and other tracking tech-
nologies. Future studies could, for example, track exactly 
how and when students mark their diagrams in coordination 
with their write-up of a proof. What kinds of insights into 
student thinking and problem solving processes might be 
gained from more studies like this one, is an open but excit-
ing question.
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