Development and Use of Learning Trajectories as Tools

Jeff Barrett, Doug Clements & Julie Sarama

Presented at the DRK12 PI Conference Arlington, VA, June 15, 2012

We gratefully acknowledge funding and support from the National Science Foundation: DRL 0732217 A Longitudinal Examination of Children's Developing Knowledge of Measurement: Mathematical and Scientific Concept and Strategy Growth from Pre-K through Grade 5

- Principle Investigators
 - Illinois State University
 - Jeffrey E. Barrett, Ph.D.
 - University at Buffalo, State University of New York
 - Douglas H. Clements, Ph.D.
 - Julie Sarama, Ph.D.
- Current research team members
 - Craig Cullen, Ph.D.
 - Doug Van Dine, Melike Kara, Jennifer McDonel, Lisa Napora, Amanda Miller, and Cheryl Eames

Purpose of our project

- Validating and revising hypothetical learning trajectories for measurement of length, area and volume (Clements & Sarama, 2009)
- Engage students in critical mathematical and scientific concepts of measurement over multiple school years to characterize shifts in strategy and reasoning from level to level
- Inform curriculum design, professional development, and assessment projects
 - ESPECIALLY plan to deliver LTs TO TEACHERS!

Our Theoretical Framework

Hierarchical Interactionism (Clements & Sarama, 2007) includes accounts of student cognition that culminate in learning trajectories (LTs) to describe cognitive development (innate and environmental interactions).

Hypothetical learning trajectory (Simon, 1995; Clements & Sarama, 2004). At each level there is:

- **A learning goal** (mathematical domain and topic)
- A **likely path for learning** (through levels of thinking)
- A description of mental Actions on Objects
- Instruction that fits their present schemes, given our understanding (model) of their actions on objects at that level.

There is an essential connection between

an instructional task Each level in the Learning Trajectory

Teaching Experiment as an empirical context for work on the LTs

- For each teaching episode, the *teacher-researcher*:
 - generates a testable hypothesis about the level of sophistication exhibited by the student, and how the student reasons as they address tasks
 - must attempt to disregard or "**forget'' this hypothesis** during the teaching episode,
 - to focus on the interaction with the student(s)
 - to find what schemes are in place,
 - Describing and observing student's strategies, questions and statements
 - has the goal to bring forth students' spontaneous schemes and to foster students' successful assimilation (Steffe & Thompson, 2000).

Methodological Context

- A longitudinal **teaching experiment** (design research) (Steffe & Thompson, 2000; Cobb & Gravemeijer, 2008)
- With 16 students from each school: one in IL, one in NY
- 3-5 teaching episodes per for 7 consecutive semesters
 - 15 to 25 minutes
 - 2-5 tasks
 - Video recordings by a witness accompanying the interviewer
- Year 1: An open-response **assessment** to all children in each school
- Year 4: Another Assessment (exit year)

Tension between an actual LT (empirical) and a hypothetical LT

- Hypothetical Trajectory
 - Published or formalized LT
 - Predictive and Descriptive in most generalized way
- Empirical trajectory
 - exhibited by a student
 - Student's exhibit a range of aspects/levels throughout the years
 - Record of observed performance on tasks intended to address various levels
- The empirical LT changes often at first and gains stability.
- However, the theoretical LT is more generalized and needs extensive evidence before it can vary.

How do you establish and validate a LT in a TE?

- We predict students' responses based on prior responses to instructional tasks at specific levels
- We confirm that tasks below the current level of sophistication are currently approachable (and that tasks more sophisticated than this level are too difficult presently).
- We check for separation among levels
 - that not all levels of thinking would be present at once; perhaps only one or two levels would be observable at once.
- Also, We look for evidence of **novel strategies**

Different types of evidence are needed for different types of LT improvements

- The number of participants depends on the type of improvement
 - Rasch modeling with large n to make major changes in the sequence of levels, or
 - TE analysis **with small n** to adapt or clarify a level.
- Emerging questions led us to employ a range of methods: both clinical interview and broad assessments

Types and examples of LT improvements (over 15 years)

Improvements for an entire level		Improvements for parts of a level		
Changes among levels		Changes within a level		
Adding levels	Revising the flow or Collapsing	Clarifying levels	Expanding levels	
ICPM, CAM for length trajectory	Relater and Repeater: LURR	EE, LURR	PRS	
(Barrett et al. 2006): ICPM & CAM for length LT; AERA Clements, Sarama & Van Dine (2011): Volume aspects	Szilagyi (2007) LURR –Unit relater and unit repeater; (Sarama et al. 2011) Clarifying the path: SO, ILC, EE	MTL paper (Barrett et al. 2012)	AERA paper (Cullen et al., 2011): Area of blobs (non square units).	

Examples of LT improvements

Improvements for an entire level Changes of the trajectory levels		Improvements for the pieces in a level Changes within a level		
Adding a level	Revising the flow or Collapsing	Clarifying	Expanding	
ICPM, CAM for length trajectory OR Volume LT	Relater and Repeater: LURR	EE, LURR	PRS	

Example: Adding a level

- (JRME (2006), Barrett & Battista (in press))
 - Moving from 4-part account: levels 1, 2a, 2b and 3
 - 5-part account: levels 1, 2a, 2b, 3a and 3b
- What is the evidence for splitting levels?
 - Variability that was systematically dichotomous, yet supersedes prior levels (2b).
- Methodology that resulted in additions:
 - Structured, task-based analysis with cross-sectional sampling from grades 2 through 11

Barrett (2006); Barrett and Battista (in press)

Previous Length LT

- Pre-Length Quantity Recognizer
- Length Quantity Recognizer
- Length Direct Comparer
- Indirect Length Comparer
- Serial Orderer to 6+
- End-to-End Length Measurer
- Length Unit Relater and Repeater
- Length Measurer
- Conceptual Ruler Measurer

- Pre-Length Quantity Recognizer
- Length Quantity Recognizer
- Length Direct Comparer
- Indirect Length Comparer
- Serial Orderer to 6+
- End-to-End Length Measurer
- Length Unit Relater and Repeater
- Length Measurer
- Conceptual Ruler Measurer
- Integrated Conceptual Path Measurer
 - Coordinated, Integrated Abstract Measurer with Derived Units

Examples of LT improvements

Improvements for an entire level Changes of the trajectory levels		Improvements for the pieces in a level Changes within a level		
Adding a level	Revising the flow or Collapsing	Clarifying	Expandin g	
ICPM, CAM for length trajectory	Relater and Repeater: LURR	EE, LURR	PRS	

Examples of LT improvements				
Improvements for an entire level Changes of the trajectory levels		Improvements for the pieces in a level Changes within a level		
Adding a level	Revising the flow or Collapsing	Clarifying	Expanding	
ICPM, CAM for length trajectory	Relater and Repeater: LURR	EE, LURR	PRS	

Paper on *Clarifying* the Length LT (Barrett et al., 2012)

Previous Length LT

- Pre-Length Quantity Recognizer
- Length Quantity Recognizer
- Length Direct Comparer
- Indirect Length Comparer
- Serial Orderer to 6+
- End-to-End Length Measurer
- Length Unit Relater and Repeater
- Length Measurer
- Conceptual Ruler Measurer

e.g., End-to-End Level (prior to 2012)

Developmental	Conceptual:	Instructional
progression	Actions on	Tasks
	Objects	

Age 6: End-to-End Length Measurer (EE): Lays units end-to-end. May not recognize the need for equallength units. The ability to apply resulting measures to comparison situations develops later in this level. Needs a complete set of units to span a length. An implicit concept that lengths can be composed as repetitions of shorter lengths underlies a scheme of laying lengths end to end. This initially only applied to small numbers of units. The scheme improves by attending more explicitly to covering distance or composing a length with parts. Have the child create a ruler and mark it with ticks and numerals to match units (in or cm). Ask students to guess objects by telling them a length, with only one unit to model it. Use measuring software that snaps to whole number values of units to report length.

End-to-End Level (Updated, 2012)

Developmental	Conceptual Structures and Strategies	Ins	structional Tasks
Progression			
Age 6: End-to-End	An implicit concept that lengths can	1)	Provide incomplete sets of
Length Measurer	be composed as repetitions of shorter		linear objects to span the
(EE): Lays units	lengths underlies a scheme of laying		length of an object to
end-to-end. May	lengths end to end. This initially only		measure.
not recognize the	applied to small numbers of units.	2)	Use relatively large objects
need for equal-	The scheme <i>is enhanced by the</i>		as units (and build a ruler
length units. The	growing conception of length		with pen length units).
ability to apply	measuring as sweeping through large	3)	Compare two objects that
resulting measures	units coordinated with composing a		must be compared indirectly
to comparison	length with parts (unit sticks). The		using only shorter objects.
situations develops	scheme may be curtailed as sets of	4)	Provide the student with a
later in this level.	objects are internally presented as		contiguous set of yellow
Needs a complete	images that are symbolized by re-		strips taped in a row to find
set of units to span	tracing the set using only one unit, or		length for comparisons.
a length.	by mere pointing and sweeping in a	5)	Draw a ruler and mark it
	coordinated set of actions (leading		with ticks and numerals to
[This level is	toward URR at the next level).		match units (in or cm).
concurrent with			
Serial Orderer to	An Ordering Scheme is organized in		

a hierarchy (initially implicit) for an

ordered series of objects, eventually supporting a graduating sequence

scheme.

6+.]

Examples of LT improvements

Improvements for an entire level Changes of the trajectory levels		Improvements for the pieces in a level Changes within a level		
Adding a level	Revising the flow or Collapsing	Clarifying	Expanding	
ICPM, CAM for length trajectory	Relater and Repeater: LURR	EE, LURR	PRS: Area LT VURR: Volume LT	

Expanding the Area LT (humble theory?)

(e.g., Change the Area Row and Column Structurer row of the Area LT)

- Include student strategies of decomposing and recomposing partial squares to make whole units. Amend the highest level of the initial HLT for area, the Array Structurer level.
- An instructional task, *The Comparison of Blobs* (task 2) should be added to the tasks and
- Include work on rectilinear arrays that are not "square" to the mental actions on objects in the Array Structurer level.

Task 2

- The students were asked, "How does the area of this small blob compare to the large blob?" If the student gave a qualitative comparison, we followed up with the prompt, "How much bigger?"
- This task was designed to promote shifts between units, sub units and further sub units.

Are there falsifiable claims here?

- ZDM article (Sarama et al., 2011) is an example of falsifying a claim about an LT sequence for length:
 - now there is a parallel sub-sequence for SO, EE and ILC.
- Although one may establish a trajectory, it is not necessarily a completed product.
- It may be useful in spite of its tentative nature.
- Are the students described by the LT set of levels and is the sequence predictive? Is it productive for analysis?

Modifying a trajectory

- Can we extend a sequence (progression levels)?
- Challenge the sequence?
 - Add levels or collapse levels?
 - Should there be sub routes in every LT?

(what metaphor helps? A river? Layered soil? A series of routes through a canyon? (J. Confrey, June 14, 2012))

• Extend the instructional task set for each level in a given LT. Can these become public collections of task examples?

Some Challenges in using progressions or trajectories:

- How do we characterize learning trajectories as tools to clarify terms and focus our work?
- See each LT as:
 - a design tool
 - an analytical tool
 - an object to be modified, extended
- We need to generate alternative LTs to challenge the comprehensive nature of any LT for its domain
- What are the terms in use within LT and LP research that should be clarified and formalized?