CAREER: Building Productive Uncertainty into Elementary Science Investigations **Eve Manz, Annabel Stoler, Genelle Diaz Silveira, and Souhaila Nassar Boston University Wheelock College of Education & Human Development** # **Abstract** This project explores how to design and implement classroom science investigations that make productive use of the uncertainty that scientists experience as they conduct investigations. We have developed a framework that situates empirical activity in a modeling enterprise, and identifies forms of uncertainty common to investigations. We used the framework to co-design, analyze, and re-design investigations with early (Grade 2) and upper elementary (Grade 5) teachers. The poster presents and illustrates design tools emerging from this work. These support curriculum designers and teachers to implement the uncertainty in science investigations in nuanced ways, making choices based on the specific investigation's affordances, conceptual goals, and student resources. # Conceptual Framework: Investigations Within a Modeling Enterprise We treat the investigation as part of a modeling enterprise that involves developing and aligning models of different kinds and purposes. The gaps between models present recurrent non-obvious decisions (uncertainty) and, as such, are sites for scientific practice. ## **Methods** The researcher-teacher team followed an iterative process of (1) developing conjectures, (2) working together on a tangible product or process (here lesson plans that supported students to engage with uncertainty), (3) analysing and reflecting on implementation, and (4) revising materials and tools to support other teachers. Researchers and teachers took on different roles, but purposefully blended typical researcher/ teacher responsibilities in data analysis and teaching. Each of four focal investigations was implemented 3-4 times. Data was logged, then analysed using project protocols to identify (1) what kinds of uncertainty were evident; (2) how uncertainty was made public; and (3) whether and when uncertainty supported productive interactions. These analyses formed the basis for redesigning lessons and tools, reflecting on, and refining the group's working processes. # **EXAMPLE: WIND DISPERSAL INVESTIGATION** We illustrate engaging children with productive uncertainty in science investigations using a seed dispersal investigation conducted with second grade children (7 & 8). The investigation addresses second grade standards related to developing models, planning and conducting investigations, ecological relationships, and form-function thinking. ### **ENGAGING WITH THE PHENOMENON AND DEVELOPING IDEAS TO TEST** #### Children: - · Read a book about seed travel. - Make predictions about their seeds, considering seed and its parent plant. - Watch a video of wind travel and describe the features that help seeds travel by wind. ## PLANNING AND CONDUCTING AN INVESTIGATION #### Children: - Discuss how to use a fan to test their ideas. - Test together with an electric fan and chart paper to mark travel. - · Write what they think now and why. #### MAKING CLAIMS AND ENGAGING IN SENSEMAKING Children share claims and evidence from their wind test, beginning with seeds that are more obvious and moving to the maple seed last. Ms. N: So what did you (maple seed group) conclude? Mira: I think it doesn't fly because we dropped it and it didn't fly. Ms. N: Is everyone in agreement that the maple seed definitely does not travel by wind? Ari: Me and Gregory think it does. Gregory: It has to have a certain amount of wind. Michael: It has to be- you know how the maple seed first starts in a tree- it has to be somewhere hiah... Ari: And so like, it is not exactly like outside, so how do you know it actually doesn't, because I've seen it live so we think yes & no. ## **DEVELOPING A NEW TEST** Many classes propose a new test of dropping the maple seed from the second floor window and testing both single and double seeds to see how far they travel. Others discuss and read about the maple seed. ### **TOOLS** #### INVESTIGATION FRAMEWORK We have translated the conceptual framework into a tool, the "Zig-Zag," that we use to identify forms of uncertainty present in particular science investigations. #### **DESIGN STRATEGIES & MAKING DESIGN BETS** We have developed a description of strategies for incorporating uncertainty and under what conditions they can be useful. | Strategy | Example | When it might be useful | |--|---|---| | Try to get rid of it | Give students closed vials for an
investigation on whether water increases or
decreases in weight when fraces. | When we can legitimately do this, and we
think the uncertainty is too much or not worth
addressing at this time. | | Make and explain a cheice | Previde a constant source of moisture in an
investigation of effects of light on plants. | When we think the uncertainty is not worth grappling with, and the reasons for the choice are within students' understanding. | | Support students to think and discuss during planning, e.g., offering two choices, outrageous claim. | Ask if tipe is a good material to use to see if a seed is good at traveling by sticking to activate. Compare two 346ss for investigating whether water weight more when it freezes: measuring the same water before and after freezing or comparing ligital water to the same volume of water that's been frozen. | When uncernsisty is important and within the
marge that students will be able to gaugelic
with productively and get where we want
them to (approximately) before the
investigation in codor to get them that will help
us make progress. | | Allow students to plan something
such that the investigation will
push back and do sensething
unexpected; then iterate. | Students find that a maple seed does not
more by wind when they pail it in front of a
fan and decide they need to replan their soxt
to drop the seed from the height it would be
on the tree. | When students weelfin't know to plan
something abend of time, uncertainty in
productive, and we think that the result will be
surprising and lead them to discuss and re-
plan in relation to scenething we care about. | | Allow students to do something
differently than each other so that
they come to different
conclusions or communicate | Students argue different plant conditions are
more successful because they focus on
different evidence, such as height of a plant
or solution it has seednode students electron | When the uncertainty is productive and there aren't so many sources of uncertainty that students will just conclude that they "did different stuff" or "are different thinse." | #### **IMPLEMENTATION TOOLS** We are refining a set of implementation tools that include routines for supporting students to plan investigations and make sense of evidence, as well as assessment tasks and "look-fors." #### Planning Investigations Routine | Component | What Students Are
Doing | Specific Teacher Strategies to Consider | |---|--|--| | Enablish a
shared
question or
goal | Developing a shand
understanding of the
phonomense of
study and generating
questions that will
motivate the
investigation. | Make a fait to madera. Value and questions in previous beaues enabled in force of the investigation. Engage with a shared book, phospapels, or relate to provide a viergementation of the phospaneses that disabels use are force to thoughout the investigation of the phospaneses that disabels can be also the force of the investigation of the phospaneses that disabels can be not be found to the phospaneses of phospanese | | Introduce the
leverification
on a feel for
making
progress on
student
questions | Understanding the
satismale for the
investigation and
facility a soud to
figure something out. | Erablish a disapponent or uncertainty that materiates the noof as moninguina by risining ballete? Institute explanations or moninguina by risining ballete? Institute explanations or some of the risining balletes, disappression, or monitation. "A newest filter or have a for of different false and a land to the disappear of land to the state investigation as on the fire making proposes on understanding the phonomentum." Fit cost design as investigation help as figure with me." | | Introduce or
discuss what is
already set in
the
irrestigation | Developing an
understanding of the
boundaries of their
investigation. | Introduce the materials and explain the nationale for the sheless, here made about what students will de. Help students contend parts of the investigation to superis of the phenomenon they are socking to understand. | | Introduce
and/or discuss
decisions
students will
make in the
investigation | Exploring ideas
about what materials
to use, low to use
them, endor what to
pay sentence to in
the investigation. | Help substitute sends for den interes deuter what materials to see, he was the same factors maken all what he yet performs to an evidence. In our extractive to apport decision-finaling and decisions, and in the contractive of the second format and the send format planting with a public comprises of emerging or in the contract planting with a public comprises of emerging or in the public contractive of the purpose of decisions. In this section of the public comprises on emerging the contractive of the public publ | | Focus | May need further support | What we are hoping for | Waw! | |---|---|--|--| | Ctains: Students can make a
claim about how a seed could
travel (ar travel ben) | Claim is not plausible. | Plausible claim based on the features of the seed. Also found in the poster. | Names more than one plausible way the seed travels
*Claim compares likelihood
*Claim identifies both plausible and implausible methods. | | Evidence: Students can draw
on evidence from empirical
tents to develop and support
their claim. | Doesn't provide evidence or
evidence doesn't appear to be
connected to the claim. | Cites evidence from a test. | *Clies evidence from multiple tools to strengthen
organizet. *Makes a comparison with other seeds to strengthen use of
evidence. *Ules evidence to explain why they changed their mind
other a too. *Tells why something in evidence. | | Explanations of how or why
the seed can travel in a
particular way. Shadonts con-
consect features of the plast or
the entiresment to the seed's
record method(s). | Restates claim and/or evidence
without naming a feature that
will help the need travel.
Or
ONLY cites generic features
similar to what children
attended to before the week
began: e.g., lightness or
smallness for flying. | Describes a feature and tells how it helps the seed turvel. The seed turvel. Class features of the parent plant or environment that allow the seed to travel in a particular way. | *Describes the work that the seed feature does or what
about this feature nakes a difference.
*Packados multiple oplimatery mechanisms in
engliancies.
*Describes how they revised or refined the explanation
over time (made breader, narrower, deeper). | | Representing ideas in
scientific drawings: Students
are drawing to express ideas
and can apply representational
strategies to do so. | Picture and explanation do not match. | Picture supports the explanation in the claims shoot. It:
Shows a feature of the seed that helps it to invect.
OR
Uses at least one representational strategy (Zocer-in,
label, arrows, different viewpoints (e.g., inside the
seed)). | Picture includes explanatory work; it "shows how things are happening". This right include: "How the sood centra off the purcet plant. "Hidden mechanisms such as wind/freve made visible. | | Uncertainty: Student
recognizes and discusses
strategies to manage
uncertainty in making a claim
based on an empirical
investigation. | No uncertainty is ovident in
Claims Sheet. Poster shows no
uncertainty,
or
Student hedges but doesn't
explain why they might be
verentiale. | Student indicates at least one reason their claim might nee be study "right," including [1] differences between the test and outdition outdoors, cly uncertainty about conditions outdoors (2) uncertainty about data collected and what it means. Analum conditions outdoors (2) contrained to the conditions outdoors (3) uncertainty about data collected and what it means. | -Makes statements of likelihood based on justifications
about the earlicers and performance of seed in tests.
-Names conditions under which the claims holds true.
-Can propose a specific way to improve the investigation
or a most investigation that addresses a problem
identified/trausen they are not sun. | # **ACKNOWLEDGEMENTS** This work was supported by NSF grants 1749324 and 0628253. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank Chris Georgen, Betsy Beckert, Sarah Arnold, Diana Garity, Lauren Woldemariam, Nora Studley, and Griselda George.