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We explored how preservice teachers in a middle school sci-
ence methods course learned and applied computational 
thinking (CT) concepts and activities during a month-long 
intervention. In the intervention, preservice teachers learned 
about CT concepts through an hour-long lecture in their 
methods class, practiced a computing-integration activity for 
electromagnetic waves, and prepared and implemented a les-
son plan based on the activity in student teaching. The inter-
vention was in the early stages of design, and, therefore, the 
research is exploratory with primarily qualitative data. The 
data were collected at multiple points throughout the month 
to measure the development of knowledge and attitudes 
about CT and computing integration. We found that preser-
vice teachers had little knowledge of computing before the 
intervention that gradually evolved into a deep understanding 
that they wanted to apply to computing-integrated activities 
science and other subjects. Though they had high levels of 
uncertainty after initial instruction and practicing the com-
puting-integration activity, they found the student teaching 
experience rewarding and motivating to including computing 
in their future teaching practice. 
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INTRODUCTION

Integrating computing into required courses is a highly effective meth-
od for equitably achieving computational literacy and using computers as 
tools for learning (DeLyser, Goode, Guzdial, Kafai, Yadav, 2018; Kale et al., 
2018). To integrate computing, teachers of non-computing subjects need to 
know fundamental computing concepts and practices, often referred to as 
computational thinking (CT), and methods for integrating computing into 
their teaching practice within their subject area. For an example in science, 
teachers can use various methods to help their students visualize phenomena 
to better grasp concepts (Gilbert, 2005), and each method has different af-
fordances. When learning about waves, a string-and-paper model (see Fig-
ure 1) allows students to work with tactile materials to visualize the wave 
and label the different parts. A drawback is that it is a static model—once 
you have glued the string, it cannot be manipulated. In contrast, a digital 
model built in Pencil Code (see Figure 2) provides a dynamic visualiza-
tion of a wave that allows students to change the values of different wave 
properties, like wavelength, and explore how it affects the wave. Further-
more, the teacher can use the model to teach scientific practices by asking 
students predict what the wave will look like if the wavelength or amplitude 
is increased or decreased, and students test their predictions by entering val-
ues into the model. This example shows how computing tools can provide 
teachers and their students to explore scientific phenomena in ways that are 
not possible otherwise. 

Figure 1. String-and-paper model of wave students made.

The Pencil Code model also affords an opportunity to teach students 
about computing. If given the pre-built model in Figure 2, students can learn 
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about computing concepts such as defining and using variables, defining 
and calling functions, and using loops by exploring the different pieces of 
code and how they contribute to the model.

 
Figure 2. Pencil Code model of a wave that was used as a template during 
student teaching.
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The common barrier to using a tool like Pencil-Code is that most sci-
ence educators do not have a background in using computing tools, con-
cepts, and practices. Although some of computing concepts and practices 
are similar to those in science (or math or literacy or art), most preservice 
teachers (PSTs) self-report knowing little about computing (Qian et al., 
2018) and having little confidence that they could integrate computing in 
their classroom (Yadav et al., 2014). The goal of this work was to explore 
how to prepare PSTs to integrate computing tools and activities in their 
teaching. This goal faces a couple of challenges, 1) PST preparation pro-
grams are already overloaded with the pedagogical knowledge that PSTs 
must learn to be successful in the classroom, so adding computing and ac-
tivities places more stress on PSTs, and 2) PSTs also must learn the con-
tent knowledge in their area, so adding computing content knowledge when 
many of them have none (Qian et al., 2018) adds additional stress. There-
fore, to sustainably integrate computing with PST preparation programs in 
other subjects, the integration must build upon PSTs existing knowledge of 
their subject and how to teach it. 

The guiding questions for this work were:

1.  What knowledge of CT concepts do PSTs have after an hour of instruc-
tion on CT concepts, an hour of preparing a computing-integrated 
activity, and an hour of student teaching using that activity?

2.  What similarities do PSTs recognize between their subject area con-
cepts and teaching practice and computational thinking concepts and 
computing-integrated activities?

Computing Integration and CT in K-12

Since Wing (2006) discussed CT as the essence of computer science, 
computational literacy work has focused on bringing CT to K-12 learners. 
Most of this work has been within in-service teacher professional develop-
ment exploring how they can use CT in their classrooms. Research on in-
service teacher professional development has suggested that teachers have 
often have conceptions of CT that do not align with computer science edu-
cation researchers’ conceptions (Sands, Yadav, & Good, 2018). For exam-
ple, Sands, Yadav, and Good (2018) surveyed 74 elementary and secondary 
teachers and found that while some of teachers’ views of CT aligned with 
the literature (e.g., using heuristics or algorithms and solving problems), 
teachers also had ideas about CT that did not (e.g., knowing how to use a 
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computer and using technology in teaching). At the preservice level, there 
has been some work examining the influence of introducing CT within 
teacher education courses on pre-service teachers’ knowledge and attitude 
towards computing. For example, Mouza et al. (2017) explored how a re-
designed educational technology courses around CT affected preservice 
teachers’ knowledge of CT. They found that introducing CT in the cours-
es significantly influenced preservice teachers’ definition of CT, as well as 
knowledge and beliefs about CT in their future classrooms. They measured 
how preservice teachers applied their knowledge of CT concepts, comput-
ing tools, and practices to design and implement content-specific lessons. 
They found that while some students were able to use their knowledge to 
support student development of CT, many had difficulty in clearly identify-
ing and labeling CT concepts and practices supported by their lessons. In 
particular, they tended to focus on general uses of technology to solve prob-
lems or do mathematics/calculations. A number of researchers have found 
similar results that brief introduction of CT ideas can help shift preservice 
teachers understanding of CT ideas and how they see its relevance in their 
future classrooms (Yadav et al., 2014). 

Exploring CT concepts as part of a year-long program or re-designed 
educational technology course is perhaps the most desirable way from com-
puter science education researchers’ perspective to introduce these concepts 
(DeLyser et al., 2018), but many PST preparation programs cannot accom-
modate additional extended instruction. Some universities have even incor-
porated educational technology instruction into methods courses to reduce 
the number of courses PSTs must take. Therefore, this study explores a 
shorter-term, month-long, computing integration intervention in a middle 
school science methods course. This paper describes how PSTs’ knowledge 
of CT and computing integration developed over the month, and how they 
aligned these new concepts with their prior knowledge and teaching prac-
tice.

Middle School Science Methods Computing Integration

To design the computing integration, the first author, a computing ed-
ucation research, met with two faculty, science education researchers, to 
discuss opportunities to integrate computing into a middle school science 
methods course. They agreed on the following design specifications: 1) use 
an interactive scientific model of a phenomenon to help visualize it, and 2) 
use a programming language that could be used for activities in multiple 
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subjects because middle-level PSTs specialize in at least two subjects. The 
first author recommended a block-based language so that PSTs would not 
need to learn programming syntax in the 1.75 hours they had for instruc-
tion. The faculty chose Pencil Code to meet the design specifications and 
because it is block-based with the option to translate to text-based Coffee-
Script or JavaScript in case students were going to gain experience with it 
across multiple subjects. 

During student teaching the PSTs would be teaching electromagnetic 
waves. Therefore, the first author created an activity using Pencil Code for 
modeling electromagnetic waves. With this activity in mind, she developed 
an hour-long guest lecture about CT concepts and practices based on second 
author’s previous work with PSTs and definitions of CT from the literature 
(Ajo, 2012; Armoni, 2016; Barr & Stephenson, 2011; Brennan & Resnick, 
2012; Cuny, Snyder, & Wing, 2011; Denning, 2017; Grover & Pea, 2013; 
Weintrop et al., 2016; Wing, 2006, 2008). CT was defined as answering 
three questions: (i) Should I get a computer to help me solve this problem? 
(ii) How would I get a computer to solve this problem? (iii) Does the com-
puter solve the problem accurately and efficiently? 

The CT instruction was given in class to the PSTs before introducing 
the electromagnetic wave computing-integration activity and was organized 
into six main components. It included motivation for CT and computing in-
tegration and five CT concepts: Abstraction, Algorithms, Automation, De-
construction, and Debugging. Four of six components included reflection 
questions to prompt PSTs to relate the CT concepts to their prior science 
content and pedagogical knowledge. The reflection questions were analo-
gous to, “Think of an example of these concepts/practices in your field,” or 
“How would you use these concepts/practices in your teaching practice?” 
The think-pair-share paradigm was used so that PSTs thought about their 
answer individually first, discussed answers at their table, and shared their 
answers with the class.

1.  Abstraction - definition and rock cycle example; extended discussion 
with paper airplane example; reflection activity

2.  Algorithms - definition; create a paper airplane activity; reflection activ-
ity

3.  Automation - definition and password manager example; trade-offs in 
automation; paper airplane example; reflection activity

4.  Deconstruction - definition and breakfast example; revisit paper airplane 
activity; reflection activity

5.  Debugging - definition and rubber duck debugging; fixing sound ex-
ample; review of lesson
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This instruction took about an hour of class time (originally allotted 45 
minutes) with a ratio of about two-thirds of time on lecture and one-third on 
discussion and activities.

After the CT instruction, the course instructor and first author guided 
the PSTs through a review of the relevant science concepts for waves, in 
which the PSTs defined the components and drew waves on whiteboards. 
Before introducing Pencil Code, PSTs were asked to write pseudocode 
(i.e., commands in plain English) for drawing a wave. Then, the first au-
thor guided the PSTs to create Pencil Code accounts and demonstrated a 
five-minute tutorial focused on the menus and blocks that PSTs would use 
for their model. After the tutorial, she walked students through a simplified 
wave model with only wavelength and not amplitude (see Figure 3). After 
walking through the simplified model, PSTs recreated the model in small 
groups. For homework, PSTs were asked to expand on their models so that 
they included amplitude (see Figure 2). PSTs were given an image of what 
the final output should look like and told that they should not use arcs as 
they did in the simplified model. This expansion upon the activity was in-
tended to be completed in class, but time did not permit. The activity took 
about 45 minutes.

Figure 3. Simplified Pencil Code model used to introduce computing inte-
gration activity in class.
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Both of the Pencil Code models (Figures 2 and 3) were designed to 
include variables. The variables supported easy manipulation of values in 
the model and, at the course instructor’s and the school’s request, the use of 
equations to connect to math concepts. The models also included functions 
and for loops, at the first author’s request. A more elegant program might 
include wavelength and amplitude as parameters of the wave function, but 
using variables contributed to math learning goals and simplified the con-
cept of functions by not using parameters. Instead functions were described 
as a tool for abstraction that could be defined once and called when needed.

After the classroom instruction, PSTs had two weeks to complete an 
assignment (described in section on data collection sources). Two weeks af-
ter this assignment was due, PSTs participated in student teaching in an 8th 
grade science class in an [blind city] Public Schools secondary school. The 
lesson plan for student teaching started with the 8th grade students recall-
ing what they know about waves in groups of four. Then the PSTs guided 
the students to create Pencil Code accounts and draw their name to test and 
use different features. Next, the PSTs showed students the complete Pencil 
Code model (see Figure 2) and asked them to explain how it worked, make 
predictions for how changing values would affect the output, and test their 
predictions with the model. Last, students were asked to create their own 
wave model based on their knowledge of waves and Pencil Code. 

A critical difference between the learning goals for the PSTs and 
the learning goals for the 8th graders was the amount of computing they 
learned. For the PSTs, learning computing concepts and practices so that 
they could design and implement lesson plans with computing integration 
was a key learning goal. For the students, however, given that we had only 
an hour with them, our learning goals were to focus on science concepts, 
using the model as a tool, and to expose the students to computing. Despite 
different learning goals, both groups showed interest in learning more about 
computing, as discussed in the results section.

METHOD

To address our research questions and evaluate the effect on PSTs of 
the CT instruction and computing-integration activity in the classroom and 
in student teaching, we collected qualitative and quantitative data about the 
process and outcomes of the intervention. We used a within-subjects experi-
mental design, exploring the effect of the intervention at four points: before 
instruction, immediately after instruction, two weeks after instruction fol-
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lowing an assignment, and after student teaching. The focus of analysis for 
all data is on the PSTs.

PSTs, Instructors, and Institutions 

The middle science methods course had 12 PSTs who participated in 
the study. Not all PSTs completed all data collection sources, so the sam-
ple size is listed for each source. Participants included six PSTs who were 
white, three who were African American, and three who were Asian Ameri-
can. There were seven women and five men. Most of the PSTs wanted to 
specialize in science education, but at least three did not. The two faculty 
instructors were both assistant professors with different educational back-
grounds. The course instructor specializes in science education and teacher 
preparation and had little background in computing, and the first author spe-
cializes in computing education and had little background in science edu-
cation or teacher preparation. They combined their areas of expertise using 
a co-teaching model with the PSTs, and both of them were present for all 
components of the intervention. For student teaching, we partnered with a 
secondary school in [blind city] Public Schools. The school is for female 
students only and serves grades 6 through 12. We worked with an eighth-
grade science course.

Data Collection Sources and Analysis

Throughout the project, we collected data through four major sources: 
CT survey, pre-student-teaching assignment, post-student-teaching reflec-
tion, and field notes for classroom instruction and student teaching. The CT 
survey was based on the survey from Yadav et al. (2014). It was completed 
before the classroom instruction (pre-survey), at the end of classroom in-
struction (post-survey), and at the end of student teaching (post-post-sur-
vey). Eleven PSTs completed the survey all three times. The survey had a 
quantitative component that asked PSTs to rate 1) their familiarity with CT, 
2) how easily CT can be integrated into other subjects, 3) how comfortable 
they would be integrating CT, and 4) their general comfort with using com-
puters. The qualitative component of the survey asked PSTs to explain/de-
fine 1) CT, 2) how they might implement CT in their class, 3) barriers that 
they might face implementing CT, and 4) list three things that someone who 
knows computing could do. 
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The pre-student-teaching assignment was completed by 12 PSTs two 
weeks after classroom instruction. The assignment had several components: 
1) reflection on classroom instruction, 2) explain CT and the five concepts 
discussed in class, 3) reading reflections on articles about CT written by 
Wing (2006) and Grover and Pea (2013), 4) expand the simplified model in 
Pencil Code to include amplitude, 5) match the computing-integration activ-
ity to standards for 8th grade science, 8th grade math, ISTE teacher, ISTE 
student, and social justice, and 6) write a 90-minute lesson plan for using 
the computing-integration activity.

The post-student-teaching reflection was completed by 11 PSTs, and it 
was due 2 weeks after student teaching. It asked four questions: 1) What 
parts of the activity went well and did not go well?, 2) What would you 
change about the lesson plan based on your experience?, 3) What are the 
tradeoffs in using a computing-integrated lesson?, and 4) If you had a pre-
built resource, like the existing code that modeled the wave and how it con-
nected to science concepts, how likely and comfortable would you be using 
a computing-integrated activity in the future?

To supplement data collection, the first author took field notes during 
the classroom instruction, which had 11 PSTs, and the student teaching, 
which had 11 PSTs. Because she was engaged in instruction, these are not 
systematic field notes from an impartial observer. Instead they were to re-
cord the topics discussed in the classroom instruction and anything of note 
(either good or bad) during the classroom instruction and student teaching.

To analyze quantitative data and quantitative coding, we used only de-
scriptive statistics. The sample size does not support inferential statistics 
nor were inferential generalizations a goal of this exploratory study. Most 
data analyses focused on qualitative data using content analysis (Hsieh & 
Shannon, 2005) using NVivo 12 software. Content analysis allowed themes 
to emerge from the data by iteratively coding the data to explore different 
interpretations. Each component of the data collection sources was coded, 
and one component could be coded into multiple nodes. The initial, explor-
atory nodes that we started with were to code which research question the 
data addressed. During the first round of analysis, we classified components 
into the research question nodes and made additional nodes for high-level 
themes within each research question. During the second round, we classi-
fied components within each research question into the high-level themes 
and made additional nodes for sub-themes. During the third round, we clas-
sified components within the themes into sub-themes and did not recognize 
additional thematic nodes. All content was scored by two raters to establish 
inter-rater reliability, which was 84% agreement.
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For the first research question, we added additional nodes for CT defi-
nitions, explanation of CT concepts, and expressions of uncertainty. For the 
second research question, we had additional nodes for effective practices for 
teaching CT to preservice teachers, recognition of alignment with standards 
(science, math, ISTE teacher and student, and social justice), applications of 
computing integration in science, and applications of computing integration 
to other subjects. All content was scored by two raters with 84% agreement.

RESULTS

The results section is organized around the research question and the 
qualitative nodes identified through content analysis. The qualitative nodes 
are supplemented with quantitative data when applicable. RQ1: What 
knowledge of computational thinking concepts do PSTs have after an 
hour of instruction on CT concepts, an hour of preparing a computing-
integrated activity, and an hour of student teaching?

Evolution of CT Definitions

We examined PSTs’ definitions of CT across our measures to examine 
how their understanding evolved as they engaged with CT. The first defini-
tions they gave were on the CT survey before classroom instruction. On the 
pre-survey, 9 of 12 PSTs said that they definitely had not heard of CT before 
or might have heard of it. The others had heard of it once but were not fa-
miliar with it. Overall, the PSTs gave a wide range of guesses for the defini-
tion of CT with the most common responses being

•	 Using technology (4 PSTs) - “Incorporating computer skills and tech-
nology into classroom settings and lessons”

•	 Problem solving or thought process (5 PSTs) - “Possibly a logical, 
methodological type of thought process” 

On the post-survey at the end of class, PSTs gave more technically correct 
but also closely mirrored the instruction, 

•	 Listing concepts discussed in class (7 PSTs) - “Computational thinking 
is applying automations, algorithms, decomposition, and debugging 
to solve problems”

•	 Using computers to solve problems (4 PSTs) - “Problem solving 
methods through computers”

After two weeks, the PSTs completed the pre-student-teaching assignment 
in which they elaborated on their CT definition. The definitions still focused 
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on the five CT concepts (Abstraction, Algorithms, Automation, Deconstruc-
tion, and Debugging) discussed in class, but they expanded to include ap-
plicability of CT across many subjects while using the computer as a tool. 
Three PSTs discussed applying CT without computers, and three implied 
that CT should be applied only with computers. For this reason and oth-
ers, the definitions at this stage were not completely accurate, but the errors 
seemed to represent a simplistic understanding of the concept rather than 
problematic misconceptions. Seven PSTs gave an answer like,

“CT is a problem solving method that emulates computational pat-
terns and behaviors such as how a computer would solve the prob-
lem. CT is broken into five parts to make the process easier to un-
derstand and make it easier to walk through to find a solution to the 
problem. CT is usually implemented when creating and executing 
computer programs however it has been found useful across disci-
plines including math, science, and the humanities. CT is also good 
on eliminating whether or not a computer would be useful to solve 
the problem or not. It encourages problem solving and increases 
digital literacy.”

Four other PSTs repeated the three questions used to define CT in class with 
minimal, but thoughtful, additions. 

“Thinking computationally basically means answering three ques-
tions: Should a computer help me solve this problem? How would 
I get a computer to solve this problem? Does the computer solve 
the problem accurately and efficiently?. It is useful because the 
steps involved with CT help students to ‘keep working” or “keep 
trying” to solve a problem.” 

After student teaching, the PSTs completed the CT survey again and 
the post-student-teaching reflection. In both data collection sources, they 
provided definitions of CT that were less reliant on using computers or list-
ing CT concepts. Over the month, the PSTs understanding seemed to have 
evolved to subject-independent process for solving problems that could be 
enhanced with the use of computers. The common themes were

•	 Decomposition (4 PSTs) - “CT allows students to break things down 
and understand better of the little things that make up the bigger things.”

•	 Problem solving and thinking systematically (3 PSTs) - “A step-by-step 
process of learning and educating in which you approach problems 
and information from an analytical point of view”

•	 Thinking like a computer to use a computer for problem solving (5 
PSTs) - “You can use computational thinking in every subject to show 
how computers can be used to do more complex problems, or repeated 
sets of data.”



Middle Science Computing Integration with Preservice Teachers 41

Explanations of CT Concepts 

In the pre-student-teaching assignment, PSTs were also asked to ex-
plain the five CT concepts introduced in class. About half of explanations 
demonstrated accurate but shallow processing of the material, e.g., repeating 
definitions and examples from class. However, 5 of 12 PSTs included exam-
ples from math, literature, community events, and science, suggesting that 
they connected the new concepts to their existing knowledge and experienc-
es. These include “Algorithms is like a step by step process. An example of 
this is like a lab procedure, where you give specific instructions on what to 
do,” and “Abstraction – identifying important details and opportunities for 
generalization (ex: analyzing a reading passage with notes and highlights).” 
All definitions and examples that PSTs gave were not specific to computing, 
even for the concept of debugging, “Debugging is the part of computational 
thinking I think we can all benefit from and utilize the most. In my opin-
ion, this is a version of checking your work. ‘Rubber duck debugging’ is ex-
plaining to an actual rubber duck what you’re doing, and it helps you to un-
cover discrepancies. I do this every time I write a paper. I will ask someone 
to listen to me read it aloud so that I can catch any errors that my mind may 
have overlooked after having stared at my computer for so long.” The con-
nections that PSTs recognized between CT and other subjects are discussed 
more in the results of RQ2.

Expressions of Uncertainty

PSTs expressed doubts in their ability to implement a computing-inte-
gration activity during the intervention but gain confidence by the end. From 
the pre-survey to the post-survey to the post-post-survey on the question, “I 
am confident that I could integrate computational thinking into my future 
classroom,” with a scale of 1 - Not at all to 5 - Completely, confidence grew 
on average from 3.3 to 4.3 to 4.7. In contrast, in response to the question, 
“Can computational thinking be integrated into non-computing classes?” 
with a scale of 1 - Not practically to 4 - Easily, scores increased overall, 
but not linearly. Nine PSTs who had given a rating of three (somewhat eas-
ily) increased to four (easily), but the two PSTs who had given a rating of 
two (not easily) decreased to one (not practically). On the final post-post-
test after student teaching, however, all but one PST gave the highest rating, 
including those who had said CT could not practically be integrated.

During the classroom instruction based on PSTs’ responses to reflec-
tion questions during instruction and other discussion, they seemed to easily 
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grasp the five CT concepts in relation to their prior knowledge about sci-
ence education. However, when PSTs were asked to explain to a computer 
or write pseudocode for how they might make a paper airplane or draw a 
wave, they quickly got stuck, asking for help after about 30 seconds into 
the activity. By the end of the activity, the most advanced responses were 
akin to, “Draw a wave with the width based on the wavelength and height 
based on amplitude.” Perhaps these activities needed more scaffolding given 
that most of the PSTs had never programmed before. However, the PSTs 
immediately were active in making programs when we introduced them 
to Pencil Code, with many starting to draw on their own before the tuto-
rial. Thus, a better approach to the instruction might be to start with a short 
programming activity, even before PSTs know any concepts, to give them a 
better sense of what programming is and what the possibilities for pseudo-
code might be. Another feasible alternative based on our results is that the 
pseudocode activity is unnecessary.

Despite being immediately active in Pencil Code and accurately recre-
ating the simplified model in class, PSTs performed poorly on the assign-
ment to extend the Pencil Code model. All PSTs used the for loop in their 
extended model, but most did not use variables or a function. One PST with 
prior programming experience created the model with all specified features. 
Variables were a main affordance of the model that allowed learners to eas-
ily manipulate the value of different wave components. From these results, 
we argue that a code writing activity, even in a block-based language, is too 
advanced for this type of introduction to CT. Instead, we should have fo-
cused on preparing the PSTs to remix and explore a pre-built model, which 
they did well during the classroom instruction.

Based on the first authors’ field notes, in the hour of preparation before 
student teaching, many PSTs were uncertain and nervous about computing-
integrated activity. They were motivated, however, by wanting to provide 
the best, hands-on learning activities for their students and multiple methods 
for learning. In the original design, PSTs were supposed to use their own 
extended model during student teaching, but many PSTs were uncomfort-
able with this. Instead, they were given the full model to use (see Figure 2). 
This change immediately relieved anxiety as the PSTs shifted attention from 
explaining the model they had created to explaining the scientific phenom-
enon. In the post-student-teaching reflection, most PSTs said they would 
be excited to use a computing-integration activity in their class as long as 
someone else had already developed the program or algorithm.

Though the focus of the paper is not on the students taught during stu-
dent teaching, the positive reactions of the students had a motivating impact 
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on the PSTs. None of the students had used Pencil Code before. Like the 
PSTs, students immediately began using a lot of different types of blocks 
when they logged into Pencil Code. Then using the program in Figure 2, the 
PSTs explained how the wave model worked, and students would change 
with values and run the code. In one exchange, a student said, “It’s a lot 
of testing, that’s the cool thing about this.” Then students created their own 
models and compared them. During the comparisons, students said, “How 
did you do that?!” “I didn’t know I could do this,” and “There’s different 
parts of science, and [computing] is one of them.” In the post-student-teach-
ing reflections, most PSTs mentioned the excitement of the students as a 
motivation to include a computing-integration activity in their future class-
room, such as, “We asked the students if they’d want to do something like 
this in the future and all their hands shot up!”

RQ2: What similarities do PSTs recognize between their subject area 
concepts and teaching practice and computational thinking concepts 
and computing-integrated activities? 

Effective Practices for Teaching CT to PSTs 

In the pre-student-teaching assignment, we asked PSTs to reflect on 
the CT instruction and discuss which parts resonated most with them. The 
purpose of this question was to identify parts of the instruction PSTs found 
most interesting or applicable to replicate or expand in the future. Almost 
every PST gave a different response to this question, though, suggesting that 
PSTs connected most with different aspects of the instruction.

A general theme for some PSTs was using computers or CT as a tool 
for teaching and learning. For one PST, CT was a new way of problem solv-
ing, “I learned how to problem solve using different methods, especially in 
ways that a computer would execute. The part of the presentation that reso-
nated with me the most is the psychology of the rubber duck [debugging]. 
When we hit a roadblock in problem-solving, we can explain our problems 
and it helps to decode our goal.” Another emphasized “teaching” the com-
puter as a way to learn, “It really resonated with me when Dr. [blind] told us 
that teaching is a good way to learn...I can most certainly attest to teaching 
being a great way to learn, and computational thinking is just that: explain-
ing your processing down to the most finite details so you know exactly 
what’s going on.” Another saw the computer as a tool to understand student 
thought processes, “It also helps me as a teacher because I can ask a student 
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how they went through it and got the answers that they did. Being able to 
reflect on each step and figure out the student got from A to Z is very useful 
to student and teacher.”

Other PSTs focused on the content they could teach with CT. This 
could be teaching students about computing concepts, “I never learned 
how to code as a student, so therefore I think teaching my students will be 
a great experience,” or teaching students about science with computing, “It 
was exciting to learn a new way to relate scientific ideas to my future stu-
dents with technology they may not be introduced to yet.”

The last general theme was PSTs appreciated the use of examples that 
were personally meaningful to them. The examples could be relevant to 
them as a science teacher, “What really resonated with me was the way she 
made it so accessible. She introduced an entirely new concept by making 
it relate to the things that are most important to us; reaching our future stu-
dents!” or to everyday life, “She use real world issue to help us understand 
the concepts.”

Recognition of Alignment with Standards

As part of the pre-student-teaching assignments, PSTs connected the 
computing-integration activity to standards for 8th grade science in Next 
Generation Science Standards (NGSS), 8th grade math in Mathematics 
[blind state] Standards of Excellence, ISTE Standards for Teachers and 
Students, and Social Justice Standards from Teaching Tolerance Anti-bias 
Framework. For 8th grade science and math, PSTs identified the content 
standards, Waves & Media in science and Solving Systems of Equations in 
math. For the NGSS crosscutting concepts, they recognized many possible 
options, including cause and effect (6 PSTs listed this standard), structure 
and function (4), and patterns (4). In addition, for the NGSS practices, they 
recognized develop and use models (8), planning and carrying out investiga-
tions (3), engaging in argument from evidence (1), and asking questions and 
defining problems (1). This variation in identifying standards suggests that 
PSTs could apply the computing-integration activity in their classroom to 
flexibly achieve NGSS crosscutting concepts and science and engineering 
practices.

PSTs similarly identified several applicable standards for ISTE teach-
ers, ISTE students, and social justice. The program was updating to the new 
ISTE standards during the project semester, so their responses are based on 
the previous version.  For the teacher standards, they identified design and 
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develop digital age learning experiences and assessments (10 PSTs listed 
this standard), facilitate and inspire student learning and creativity (8), and 
model digital age work and learning (4). For the student standards, PSTs 
identified creativity and innovation (9), communication and collaboration 
(4), research and information fluency (3), critical thinking, problem solving, 
and decision making (4), digital citizenship (1), and technology operations 
and concepts (3). They also identified social justice standards for Identity, 
#1 (2) and #4 (2); Diversity, #6 (5), #9 (2), and #10 (2); Justice, #14 (3); and 
Action, #17 (2) and #20 (2). Because the PSTs thought that the computing-
integration activity aligned with several standards, they can apply the activ-
ity to flexibly achieve these standards in their classroom.

Applications of Computing Integration in Science and Other Subjects

During the CT instruction in class, PSTs were asked reflection ques-
tions after introducing a set of CT concepts related to the five main con-
cepts to connect the new information to their prior knowledge. When asked 
to share with their table after independent reflection, each table had lively 
discussions that were recorded through field notes. The point of these reflec-
tion items was not to create an exhaustive list of overlap between science 
and CT, but to help PSTs recognize that they already knew something about 
the concepts that were being discussed and to build upon that knowledge 
to learn about integrating computing in their field. Below are the responses 
that groups shared with the whole class. For example, when asked, “What 
problems in your field need to be decomposed?” PSTs gave examples in-
cluding cycles (like the rock cycle so you can focus on how one part hap-
pens), graphing, and the scientific method.

•	 How would you apply defining parameters, conditionals, and test cases 
to teaching? – Come up with what-if scenarios for teaching (e.g., if 
computers aren’t working, if you were doing an activity outside but 
there was bad weather); Set parameters for projects (e.g., size of bottle 
for making bottle rockets); Come up with rubrics for projects to set 
parameters and expectations

•	 How do mental models, logical thinking, iterative design, or sequencing 
apply to your field? – Scientific method relates to all of them (mental 
model of how experiment will go, logical thinking for hypotheses/rea-
soning, iterative design when things don’t go as planned, and a specific 
sequence of steps); Iterative design for working on experiments and 
projects; Logical thinking is related to reasoning in science
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•	 What do you wish you could automate in your field? – Grading; Running 
experiments repeatedly; Data collection – especially over a long time

•	 What problems in your field need to be decomposed? – Cycles, like 
the rock cycle so you can focus on how one part happens; Graphing; 
Scientific method

PSTs made connections to science teaching in their pre-student-teach-
ing assignments and post-student-teaching reflections. Five of their ideas 
centered on data collection, analysis, and visualization, “I would love to in-
corporate this in my future classroom by making a lesson plan around mak-
ing a graph in class together; showing them how to make science and tech-
nology fun.” Four focused on promoting CT in science without include an 
activity that used programming, such as “In science computational thinking 
has a place. Most spacecrafts operate automatically. I could have a lesson 
that explains how they operate along with the computational thinking that 
went into its development.” Two others emphasized that the computing inte-
grated activity allowed them to deepen students’ knowledge of topics, “The 
lesson presented helped to build upon students’ understanding of their exist-
ing knowledge, and by manipulating the waves in pencil code, they were 
able to learn more, such as what frequency is, and what the different vari-
ables do.” 

In the pre-student-teaching assignment, five PSTs provided novel ex-
amples of CT in other subjects These examples tended to focus on using CT 
as a process for solving problems.

“CT implements a thorough process through which we can learn 
and create. It is a specific way to solve problems and work towards 
a solution in ways in which a computer may. It integrates computa-
tional skills into non-computing arenas that helps students to come 
to their own meaningful explanations of concepts. It’s very useful 
when you need to create and/or use an algorithm for a project such 
as analyzing poetry or finding patterns that follow a mathematical 
rule.”

In the post-student-teaching reflection, PSTs discussed their interest in 
applying CT and computing integrated activities to other subjects that they 
might also teach. The subjects include math, “I did like the PencilCode to 
an extent and when playing around with it outside of class, I came up with 
a fun possible activity with constructing right triangles in PencilCode and 
practicing the Pythagorean Theorem,” English, “I would also like to utilize 
it into any of the English classes that I teach by using it for reading com-
prehension and analysis. I also like the entire process feels very organic. 
It’s not a wild approach because a lot of people already follow these steps 
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without thinking about it or without giving a name to it. As a teacher who 
wants to teach a discussion based class I think this is also useful in generat-
ing conversations in the classroom about the material,” and history, “I would 
definitely be able to use this in science but also in history if I choose, I can 
do it with science with countless data sets that we may come up with in 
the course of our learning and I can use it in History to show the route of a 
group of people, or the death toll from a war.”

DISCUSSION

These results have implications for future implementations on CT with-
in teacher education. First, activities took longer than expected, especially 
for the CT general instruction in class when we engaged in activities and 
reported back to the group. Second, the computing aspects of the CT gen-
eral instruction needed to be scaffolded more, or perhaps the programming 
language needs to be introduced earlier to give students a better idea of what 
a programming language is. Third, lower-level explanations of the program-
ming language, even though it is block-based, is needed. For example, one 
PST did not recognize that the block for dividing ( _ / _ ) was for division, 
so we should not assume that the purpose of blocks are intuitive. Fourth, 
PSTs were uncertain about their ability to debug. We could include common 
mistakes made in the activities, like misspelling wavelength, during the in-
troduction to the computing-integrated activity and ask PSTs to debug them 
to gain practice and confidence at debugging. 

Overall, the integration was successful for teaching PSTs fundamental 
CT concepts and preparing them to teach a computing-integrated activity. 
CT and computing-integrated activities, despite being unfamiliar to most 
PSTs and anxiety-inducing for some, were embraced enthusiastically by 
all but one PST by the end of the month. Though the intervention took a 
month, it actually was one week of class time in a single course, one sub-
stantial assignment, and one student teaching experience. The PSTs engaged 
in several other important and unrelated class and preparation activities dur-
ing the intervention, which perhaps helped them to make the many connec-
tions to other subjects that they did. One major limitation of the research 
is that we have not followed up with the PSTs after their final reflections, 
and we do not know whether they continue to be interested in computing-
integration activities or will use them in their classrooms. Based on the en-
thusiasm from some PSTs and having already used them in a classroom, we 
expect that they will continue to use them, “I am just excited to be able to 
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learn it inside and out to use this program and others like it to bridge the 
gap between known information and newly acquired information for my 
students.”
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