
Jl. of Computers in Mathematics and Science Teaching (2021) 40(1), 29-49

Middle Science Computing Integration with Preservice
Teachers

LAUREN MARGULIEUX
Georgia State University, USA

lmargulieux@gsu.edu

AMAN YADAV
Michigan State University, USA

ayadav@msu.edu

We explored how preservice teachers in a middle school sci-
ence methods course learned and applied computational
thinking (CT) concepts and activities during a month-long
intervention. In the intervention, preservice teachers learned
about CT concepts through an hour-long lecture in their
methods class, practiced a computing-integration activity for
electromagnetic waves, and prepared and implemented a les-
son plan based on the activity in student teaching. The inter-
vention was in the early stages of design, and, therefore, the
research is exploratory with primarily qualitative data. The
data were collected at multiple points throughout the month
to measure the development of knowledge and attitudes
about CT and computing integration. We found that preser-
vice teachers had little knowledge of computing before the
intervention that gradually evolved into a deep understanding
that they wanted to apply to computing-integrated activities
science and other subjects. Though they had high levels of
uncertainty after initial instruction and practicing the com-
puting-integration activity, they found the student teaching
experience rewarding and motivating to including computing
in their future teaching practice.

30 Margulieux and Yadav

INTRODUCTION

Integrating computing into required courses is a highly effective meth-
od for equitably achieving computational literacy and using computers as
tools for learning (DeLyser, Goode, Guzdial, Kafai, Yadav, 2018; Kale et al.,
2018). To integrate computing, teachers of non-computing subjects need to
know fundamental computing concepts and practices, often referred to as
computational thinking (CT), and methods for integrating computing into
their teaching practice within their subject area. For an example in science,
teachers can use various methods to help their students visualize phenomena
to better grasp concepts (Gilbert, 2005), and each method has different af-
fordances. When learning about waves, a string-and-paper model (see Fig-
ure 1) allows students to work with tactile materials to visualize the wave
and label the different parts. A drawback is that it is a static model—once
you have glued the string, it cannot be manipulated. In contrast, a digital
model built in Pencil Code (see Figure 2) provides a dynamic visualiza-
tion of a wave that allows students to change the values of different wave
properties, like wavelength, and explore how it affects the wave. Further-
more, the teacher can use the model to teach scientific practices by asking
students predict what the wave will look like if the wavelength or amplitude
is increased or decreased, and students test their predictions by entering val-
ues into the model. This example shows how computing tools can provide
teachers and their students to explore scientific phenomena in ways that are
not possible otherwise.

Figure 1. String-and-paper model of wave students made.

The Pencil Code model also affords an opportunity to teach students
about computing. If given the pre-built model in Figure 2, students can learn

Middle Science Computing Integration with Preservice Teachers 31

about computing concepts such as defining and using variables, defining
and calling functions, and using loops by exploring the different pieces of
code and how they contribute to the model.

Figure 2. Pencil Code model of a wave that was used as a template during
student teaching.

32 Margulieux and Yadav

The common barrier to using a tool like Pencil-Code is that most sci-
ence educators do not have a background in using computing tools, con-
cepts, and practices. Although some of computing concepts and practices
are similar to those in science (or math or literacy or art), most preservice
teachers (PSTs) self-report knowing little about computing (Qian et al.,
2018) and having little confidence that they could integrate computing in
their classroom (Yadav et al., 2014). The goal of this work was to explore
how to prepare PSTs to integrate computing tools and activities in their
teaching. This goal faces a couple of challenges, 1) PST preparation pro-
grams are already overloaded with the pedagogical knowledge that PSTs
must learn to be successful in the classroom, so adding computing and ac-
tivities places more stress on PSTs, and 2) PSTs also must learn the con-
tent knowledge in their area, so adding computing content knowledge when
many of them have none (Qian et al., 2018) adds additional stress. There-
fore, to sustainably integrate computing with PST preparation programs in
other subjects, the integration must build upon PSTs existing knowledge of
their subject and how to teach it.

The guiding questions for this work were:

1. What knowledge of CT concepts do PSTs have after an hour of instruc-
tion on CT concepts, an hour of preparing a computing-integrated
activity, and an hour of student teaching using that activity?

2. What similarities do PSTs recognize between their subject area con-
cepts and teaching practice and computational thinking concepts and
computing-integrated activities?

Computing Integration and CT in K-12

Since Wing (2006) discussed CT as the essence of computer science,
computational literacy work has focused on bringing CT to K-12 learners.
Most of this work has been within in-service teacher professional develop-
ment exploring how they can use CT in their classrooms. Research on in-
service teacher professional development has suggested that teachers have
often have conceptions of CT that do not align with computer science edu-
cation researchers’ conceptions (Sands, Yadav, & Good, 2018). For exam-
ple, Sands, Yadav, and Good (2018) surveyed 74 elementary and secondary
teachers and found that while some of teachers’ views of CT aligned with
the literature (e.g., using heuristics or algorithms and solving problems),
teachers also had ideas about CT that did not (e.g., knowing how to use a

Middle Science Computing Integration with Preservice Teachers 33

computer and using technology in teaching). At the preservice level, there
has been some work examining the influence of introducing CT within
teacher education courses on pre-service teachers’ knowledge and attitude
towards computing. For example, Mouza et al. (2017) explored how a re-
designed educational technology courses around CT affected preservice
teachers’ knowledge of CT. They found that introducing CT in the cours-
es significantly influenced preservice teachers’ definition of CT, as well as
knowledge and beliefs about CT in their future classrooms. They measured
how preservice teachers applied their knowledge of CT concepts, comput-
ing tools, and practices to design and implement content-specific lessons.
They found that while some students were able to use their knowledge to
support student development of CT, many had difficulty in clearly identify-
ing and labeling CT concepts and practices supported by their lessons. In
particular, they tended to focus on general uses of technology to solve prob-
lems or do mathematics/calculations. A number of researchers have found
similar results that brief introduction of CT ideas can help shift preservice
teachers understanding of CT ideas and how they see its relevance in their
future classrooms (Yadav et al., 2014).

Exploring CT concepts as part of a year-long program or re-designed
educational technology course is perhaps the most desirable way from com-
puter science education researchers’ perspective to introduce these concepts
(DeLyser et al., 2018), but many PST preparation programs cannot accom-
modate additional extended instruction. Some universities have even incor-
porated educational technology instruction into methods courses to reduce
the number of courses PSTs must take. Therefore, this study explores a
shorter-term, month-long, computing integration intervention in a middle
school science methods course. This paper describes how PSTs’ knowledge
of CT and computing integration developed over the month, and how they
aligned these new concepts with their prior knowledge and teaching prac-
tice.

Middle School Science Methods Computing Integration

To design the computing integration, the first author, a computing ed-
ucation research, met with two faculty, science education researchers, to
discuss opportunities to integrate computing into a middle school science
methods course. They agreed on the following design specifications: 1) use
an interactive scientific model of a phenomenon to help visualize it, and 2)
use a programming language that could be used for activities in multiple

34 Margulieux and Yadav

subjects because middle-level PSTs specialize in at least two subjects. The
first author recommended a block-based language so that PSTs would not
need to learn programming syntax in the 1.75 hours they had for instruc-
tion. The faculty chose Pencil Code to meet the design specifications and
because it is block-based with the option to translate to text-based Coffee-
Script or JavaScript in case students were going to gain experience with it
across multiple subjects.

During student teaching the PSTs would be teaching electromagnetic
waves. Therefore, the first author created an activity using Pencil Code for
modeling electromagnetic waves. With this activity in mind, she developed
an hour-long guest lecture about CT concepts and practices based on second
author’s previous work with PSTs and definitions of CT from the literature
(Ajo, 2012; Armoni, 2016; Barr & Stephenson, 2011; Brennan & Resnick,
2012; Cuny, Snyder, & Wing, 2011; Denning, 2017; Grover & Pea, 2013;
Weintrop et al., 2016; Wing, 2006, 2008). CT was defined as answering
three questions: (i) Should I get a computer to help me solve this problem?
(ii) How would I get a computer to solve this problem? (iii) Does the com-
puter solve the problem accurately and efficiently?

The CT instruction was given in class to the PSTs before introducing
the electromagnetic wave computing-integration activity and was organized
into six main components. It included motivation for CT and computing in-
tegration and five CT concepts: Abstraction, Algorithms, Automation, De-
construction, and Debugging. Four of six components included reflection
questions to prompt PSTs to relate the CT concepts to their prior science
content and pedagogical knowledge. The reflection questions were analo-
gous to, “Think of an example of these concepts/practices in your field,” or
“How would you use these concepts/practices in your teaching practice?”
The think-pair-share paradigm was used so that PSTs thought about their
answer individually first, discussed answers at their table, and shared their
answers with the class.

1. Abstraction - definition and rock cycle example; extended discussion
with paper airplane example; reflection activity

2. Algorithms - definition; create a paper airplane activity; reflection activ-
ity

3. Automation - definition and password manager example; trade-offs in
automation; paper airplane example; reflection activity

4. Deconstruction - definition and breakfast example; revisit paper airplane
activity; reflection activity

5. Debugging - definition and rubber duck debugging; fixing sound ex-
ample; review of lesson

Middle Science Computing Integration with Preservice Teachers 35

This instruction took about an hour of class time (originally allotted 45
minutes) with a ratio of about two-thirds of time on lecture and one-third on
discussion and activities.

After the CT instruction, the course instructor and first author guided
the PSTs through a review of the relevant science concepts for waves, in
which the PSTs defined the components and drew waves on whiteboards.
Before introducing Pencil Code, PSTs were asked to write pseudocode
(i.e., commands in plain English) for drawing a wave. Then, the first au-
thor guided the PSTs to create Pencil Code accounts and demonstrated a
five-minute tutorial focused on the menus and blocks that PSTs would use
for their model. After the tutorial, she walked students through a simplified
wave model with only wavelength and not amplitude (see Figure 3). After
walking through the simplified model, PSTs recreated the model in small
groups. For homework, PSTs were asked to expand on their models so that
they included amplitude (see Figure 2). PSTs were given an image of what
the final output should look like and told that they should not use arcs as
they did in the simplified model. This expansion upon the activity was in-
tended to be completed in class, but time did not permit. The activity took
about 45 minutes.

Figure 3. Simplified Pencil Code model used to introduce computing inte-
gration activity in class.

36 Margulieux and Yadav

Both of the Pencil Code models (Figures 2 and 3) were designed to
include variables. The variables supported easy manipulation of values in
the model and, at the course instructor’s and the school’s request, the use of
equations to connect to math concepts. The models also included functions
and for loops, at the first author’s request. A more elegant program might
include wavelength and amplitude as parameters of the wave function, but
using variables contributed to math learning goals and simplified the con-
cept of functions by not using parameters. Instead functions were described
as a tool for abstraction that could be defined once and called when needed.

After the classroom instruction, PSTs had two weeks to complete an
assignment (described in section on data collection sources). Two weeks af-
ter this assignment was due, PSTs participated in student teaching in an 8th
grade science class in an [blind city] Public Schools secondary school. The
lesson plan for student teaching started with the 8th grade students recall-
ing what they know about waves in groups of four. Then the PSTs guided
the students to create Pencil Code accounts and draw their name to test and
use different features. Next, the PSTs showed students the complete Pencil
Code model (see Figure 2) and asked them to explain how it worked, make
predictions for how changing values would affect the output, and test their
predictions with the model. Last, students were asked to create their own
wave model based on their knowledge of waves and Pencil Code.

A critical difference between the learning goals for the PSTs and
the learning goals for the 8th graders was the amount of computing they
learned. For the PSTs, learning computing concepts and practices so that
they could design and implement lesson plans with computing integration
was a key learning goal. For the students, however, given that we had only
an hour with them, our learning goals were to focus on science concepts,
using the model as a tool, and to expose the students to computing. Despite
different learning goals, both groups showed interest in learning more about
computing, as discussed in the results section.

METHOD

To address our research questions and evaluate the effect on PSTs of
the CT instruction and computing-integration activity in the classroom and
in student teaching, we collected qualitative and quantitative data about the
process and outcomes of the intervention. We used a within-subjects experi-
mental design, exploring the effect of the intervention at four points: before
instruction, immediately after instruction, two weeks after instruction fol-

Middle Science Computing Integration with Preservice Teachers 37

lowing an assignment, and after student teaching. The focus of analysis for
all data is on the PSTs.

PSTs, Instructors, and Institutions

The middle science methods course had 12 PSTs who participated in
the study. Not all PSTs completed all data collection sources, so the sam-
ple size is listed for each source. Participants included six PSTs who were
white, three who were African American, and three who were Asian Ameri-
can. There were seven women and five men. Most of the PSTs wanted to
specialize in science education, but at least three did not. The two faculty
instructors were both assistant professors with different educational back-
grounds. The course instructor specializes in science education and teacher
preparation and had little background in computing, and the first author spe-
cializes in computing education and had little background in science edu-
cation or teacher preparation. They combined their areas of expertise using
a co-teaching model with the PSTs, and both of them were present for all
components of the intervention. For student teaching, we partnered with a
secondary school in [blind city] Public Schools. The school is for female
students only and serves grades 6 through 12. We worked with an eighth-
grade science course.

Data Collection Sources and Analysis

Throughout the project, we collected data through four major sources:
CT survey, pre-student-teaching assignment, post-student-teaching reflec-
tion, and field notes for classroom instruction and student teaching. The CT
survey was based on the survey from Yadav et al. (2014). It was completed
before the classroom instruction (pre-survey), at the end of classroom in-
struction (post-survey), and at the end of student teaching (post-post-sur-
vey). Eleven PSTs completed the survey all three times. The survey had a
quantitative component that asked PSTs to rate 1) their familiarity with CT,
2) how easily CT can be integrated into other subjects, 3) how comfortable
they would be integrating CT, and 4) their general comfort with using com-
puters. The qualitative component of the survey asked PSTs to explain/de-
fine 1) CT, 2) how they might implement CT in their class, 3) barriers that
they might face implementing CT, and 4) list three things that someone who
knows computing could do.

38 Margulieux and Yadav

The pre-student-teaching assignment was completed by 12 PSTs two
weeks after classroom instruction. The assignment had several components:
1) reflection on classroom instruction, 2) explain CT and the five concepts
discussed in class, 3) reading reflections on articles about CT written by
Wing (2006) and Grover and Pea (2013), 4) expand the simplified model in
Pencil Code to include amplitude, 5) match the computing-integration activ-
ity to standards for 8th grade science, 8th grade math, ISTE teacher, ISTE
student, and social justice, and 6) write a 90-minute lesson plan for using
the computing-integration activity.

The post-student-teaching reflection was completed by 11 PSTs, and it
was due 2 weeks after student teaching. It asked four questions: 1) What
parts of the activity went well and did not go well?, 2) What would you
change about the lesson plan based on your experience?, 3) What are the
tradeoffs in using a computing-integrated lesson?, and 4) If you had a pre-
built resource, like the existing code that modeled the wave and how it con-
nected to science concepts, how likely and comfortable would you be using
a computing-integrated activity in the future?

To supplement data collection, the first author took field notes during
the classroom instruction, which had 11 PSTs, and the student teaching,
which had 11 PSTs. Because she was engaged in instruction, these are not
systematic field notes from an impartial observer. Instead they were to re-
cord the topics discussed in the classroom instruction and anything of note
(either good or bad) during the classroom instruction and student teaching.

To analyze quantitative data and quantitative coding, we used only de-
scriptive statistics. The sample size does not support inferential statistics
nor were inferential generalizations a goal of this exploratory study. Most
data analyses focused on qualitative data using content analysis (Hsieh &
Shannon, 2005) using NVivo 12 software. Content analysis allowed themes
to emerge from the data by iteratively coding the data to explore different
interpretations. Each component of the data collection sources was coded,
and one component could be coded into multiple nodes. The initial, explor-
atory nodes that we started with were to code which research question the
data addressed. During the first round of analysis, we classified components
into the research question nodes and made additional nodes for high-level
themes within each research question. During the second round, we classi-
fied components within each research question into the high-level themes
and made additional nodes for sub-themes. During the third round, we clas-
sified components within the themes into sub-themes and did not recognize
additional thematic nodes. All content was scored by two raters to establish
inter-rater reliability, which was 84% agreement.

Middle Science Computing Integration with Preservice Teachers 39

For the first research question, we added additional nodes for CT defi-
nitions, explanation of CT concepts, and expressions of uncertainty. For the
second research question, we had additional nodes for effective practices for
teaching CT to preservice teachers, recognition of alignment with standards
(science, math, ISTE teacher and student, and social justice), applications of
computing integration in science, and applications of computing integration
to other subjects. All content was scored by two raters with 84% agreement.

RESULTS

The results section is organized around the research question and the
qualitative nodes identified through content analysis. The qualitative nodes
are supplemented with quantitative data when applicable. RQ1: What
knowledge of computational thinking concepts do PSTs have after an
hour of instruction on CT concepts, an hour of preparing a computing-
integrated activity, and an hour of student teaching?

Evolution of CT Definitions

We examined PSTs’ definitions of CT across our measures to examine
how their understanding evolved as they engaged with CT. The first defini-
tions they gave were on the CT survey before classroom instruction. On the
pre-survey, 9 of 12 PSTs said that they definitely had not heard of CT before
or might have heard of it. The others had heard of it once but were not fa-
miliar with it. Overall, the PSTs gave a wide range of guesses for the defini-
tion of CT with the most common responses being

•	 Using technology (4 PSTs) - “Incorporating computer skills and tech-
nology into classroom settings and lessons”

•	 Problem solving or thought process (5 PSTs) - “Possibly a logical,
methodological type of thought process”

On the post-survey at the end of class, PSTs gave more technically correct
but also closely mirrored the instruction,

•	 Listing concepts discussed in class (7 PSTs) - “Computational thinking
is applying automations, algorithms, decomposition, and debugging
to solve problems”

•	 Using computers to solve problems (4 PSTs) - “Problem solving
methods through computers”

After two weeks, the PSTs completed the pre-student-teaching assignment
in which they elaborated on their CT definition. The definitions still focused

40 Margulieux and Yadav

on the five CT concepts (Abstraction, Algorithms, Automation, Deconstruc-
tion, and Debugging) discussed in class, but they expanded to include ap-
plicability of CT across many subjects while using the computer as a tool.
Three PSTs discussed applying CT without computers, and three implied
that CT should be applied only with computers. For this reason and oth-
ers, the definitions at this stage were not completely accurate, but the errors
seemed to represent a simplistic understanding of the concept rather than
problematic misconceptions. Seven PSTs gave an answer like,

“CT is a problem solving method that emulates computational pat-
terns and behaviors such as how a computer would solve the prob-
lem. CT is broken into five parts to make the process easier to un-
derstand and make it easier to walk through to find a solution to the
problem. CT is usually implemented when creating and executing
computer programs however it has been found useful across disci-
plines including math, science, and the humanities. CT is also good
on eliminating whether or not a computer would be useful to solve
the problem or not. It encourages problem solving and increases
digital literacy.”

Four other PSTs repeated the three questions used to define CT in class with
minimal, but thoughtful, additions.

“Thinking computationally basically means answering three ques-
tions: Should a computer help me solve this problem? How would
I get a computer to solve this problem? Does the computer solve
the problem accurately and efficiently?. It is useful because the
steps involved with CT help students to ‘keep working” or “keep
trying” to solve a problem.”

After student teaching, the PSTs completed the CT survey again and
the post-student-teaching reflection. In both data collection sources, they
provided definitions of CT that were less reliant on using computers or list-
ing CT concepts. Over the month, the PSTs understanding seemed to have
evolved to subject-independent process for solving problems that could be
enhanced with the use of computers. The common themes were

•	 Decomposition (4 PSTs) - “CT allows students to break things down
and understand better of the little things that make up the bigger things.”

•	 Problem solving and thinking systematically (3 PSTs) - “A step-by-step
process of learning and educating in which you approach problems
and information from an analytical point of view”

•	 Thinking like a computer to use a computer for problem solving (5
PSTs) - “You can use computational thinking in every subject to show
how computers can be used to do more complex problems, or repeated
sets of data.”

Middle Science Computing Integration with Preservice Teachers 41

Explanations of CT Concepts

In the pre-student-teaching assignment, PSTs were also asked to ex-
plain the five CT concepts introduced in class. About half of explanations
demonstrated accurate but shallow processing of the material, e.g., repeating
definitions and examples from class. However, 5 of 12 PSTs included exam-
ples from math, literature, community events, and science, suggesting that
they connected the new concepts to their existing knowledge and experienc-
es. These include “Algorithms is like a step by step process. An example of
this is like a lab procedure, where you give specific instructions on what to
do,” and “Abstraction – identifying important details and opportunities for
generalization (ex: analyzing a reading passage with notes and highlights).”
All definitions and examples that PSTs gave were not specific to computing,
even for the concept of debugging, “Debugging is the part of computational
thinking I think we can all benefit from and utilize the most. In my opin-
ion, this is a version of checking your work. ‘Rubber duck debugging’ is ex-
plaining to an actual rubber duck what you’re doing, and it helps you to un-
cover discrepancies. I do this every time I write a paper. I will ask someone
to listen to me read it aloud so that I can catch any errors that my mind may
have overlooked after having stared at my computer for so long.” The con-
nections that PSTs recognized between CT and other subjects are discussed
more in the results of RQ2.

Expressions of Uncertainty

PSTs expressed doubts in their ability to implement a computing-inte-
gration activity during the intervention but gain confidence by the end. From
the pre-survey to the post-survey to the post-post-survey on the question, “I
am confident that I could integrate computational thinking into my future
classroom,” with a scale of 1 - Not at all to 5 - Completely, confidence grew
on average from 3.3 to 4.3 to 4.7. In contrast, in response to the question,
“Can computational thinking be integrated into non-computing classes?”
with a scale of 1 - Not practically to 4 - Easily, scores increased overall,
but not linearly. Nine PSTs who had given a rating of three (somewhat eas-
ily) increased to four (easily), but the two PSTs who had given a rating of
two (not easily) decreased to one (not practically). On the final post-post-
test after student teaching, however, all but one PST gave the highest rating,
including those who had said CT could not practically be integrated.

During the classroom instruction based on PSTs’ responses to reflec-
tion questions during instruction and other discussion, they seemed to easily

42 Margulieux and Yadav

grasp the five CT concepts in relation to their prior knowledge about sci-
ence education. However, when PSTs were asked to explain to a computer
or write pseudocode for how they might make a paper airplane or draw a
wave, they quickly got stuck, asking for help after about 30 seconds into
the activity. By the end of the activity, the most advanced responses were
akin to, “Draw a wave with the width based on the wavelength and height
based on amplitude.” Perhaps these activities needed more scaffolding given
that most of the PSTs had never programmed before. However, the PSTs
immediately were active in making programs when we introduced them
to Pencil Code, with many starting to draw on their own before the tuto-
rial. Thus, a better approach to the instruction might be to start with a short
programming activity, even before PSTs know any concepts, to give them a
better sense of what programming is and what the possibilities for pseudo-
code might be. Another feasible alternative based on our results is that the
pseudocode activity is unnecessary.

Despite being immediately active in Pencil Code and accurately recre-
ating the simplified model in class, PSTs performed poorly on the assign-
ment to extend the Pencil Code model. All PSTs used the for loop in their
extended model, but most did not use variables or a function. One PST with
prior programming experience created the model with all specified features.
Variables were a main affordance of the model that allowed learners to eas-
ily manipulate the value of different wave components. From these results,
we argue that a code writing activity, even in a block-based language, is too
advanced for this type of introduction to CT. Instead, we should have fo-
cused on preparing the PSTs to remix and explore a pre-built model, which
they did well during the classroom instruction.

Based on the first authors’ field notes, in the hour of preparation before
student teaching, many PSTs were uncertain and nervous about computing-
integrated activity. They were motivated, however, by wanting to provide
the best, hands-on learning activities for their students and multiple methods
for learning. In the original design, PSTs were supposed to use their own
extended model during student teaching, but many PSTs were uncomfort-
able with this. Instead, they were given the full model to use (see Figure 2).
This change immediately relieved anxiety as the PSTs shifted attention from
explaining the model they had created to explaining the scientific phenom-
enon. In the post-student-teaching reflection, most PSTs said they would
be excited to use a computing-integration activity in their class as long as
someone else had already developed the program or algorithm.

Though the focus of the paper is not on the students taught during stu-
dent teaching, the positive reactions of the students had a motivating impact

Middle Science Computing Integration with Preservice Teachers 43

on the PSTs. None of the students had used Pencil Code before. Like the
PSTs, students immediately began using a lot of different types of blocks
when they logged into Pencil Code. Then using the program in Figure 2, the
PSTs explained how the wave model worked, and students would change
with values and run the code. In one exchange, a student said, “It’s a lot
of testing, that’s the cool thing about this.” Then students created their own
models and compared them. During the comparisons, students said, “How
did you do that?!” “I didn’t know I could do this,” and “There’s different
parts of science, and [computing] is one of them.” In the post-student-teach-
ing reflections, most PSTs mentioned the excitement of the students as a
motivation to include a computing-integration activity in their future class-
room, such as, “We asked the students if they’d want to do something like
this in the future and all their hands shot up!”

RQ2: What similarities do PSTs recognize between their subject area
concepts and teaching practice and computational thinking concepts
and computing-integrated activities?

Effective Practices for Teaching CT to PSTs

In the pre-student-teaching assignment, we asked PSTs to reflect on
the CT instruction and discuss which parts resonated most with them. The
purpose of this question was to identify parts of the instruction PSTs found
most interesting or applicable to replicate or expand in the future. Almost
every PST gave a different response to this question, though, suggesting that
PSTs connected most with different aspects of the instruction.

A general theme for some PSTs was using computers or CT as a tool
for teaching and learning. For one PST, CT was a new way of problem solv-
ing, “I learned how to problem solve using different methods, especially in
ways that a computer would execute. The part of the presentation that reso-
nated with me the most is the psychology of the rubber duck [debugging].
When we hit a roadblock in problem-solving, we can explain our problems
and it helps to decode our goal.” Another emphasized “teaching” the com-
puter as a way to learn, “It really resonated with me when Dr. [blind] told us
that teaching is a good way to learn...I can most certainly attest to teaching
being a great way to learn, and computational thinking is just that: explain-
ing your processing down to the most finite details so you know exactly
what’s going on.” Another saw the computer as a tool to understand student
thought processes, “It also helps me as a teacher because I can ask a student

44 Margulieux and Yadav

how they went through it and got the answers that they did. Being able to
reflect on each step and figure out the student got from A to Z is very useful
to student and teacher.”

Other PSTs focused on the content they could teach with CT. This
could be teaching students about computing concepts, “I never learned
how to code as a student, so therefore I think teaching my students will be
a great experience,” or teaching students about science with computing, “It
was exciting to learn a new way to relate scientific ideas to my future stu-
dents with technology they may not be introduced to yet.”

The last general theme was PSTs appreciated the use of examples that
were personally meaningful to them. The examples could be relevant to
them as a science teacher, “What really resonated with me was the way she
made it so accessible. She introduced an entirely new concept by making
it relate to the things that are most important to us; reaching our future stu-
dents!” or to everyday life, “She use real world issue to help us understand
the concepts.”

Recognition of Alignment with Standards

As part of the pre-student-teaching assignments, PSTs connected the
computing-integration activity to standards for 8th grade science in Next
Generation Science Standards (NGSS), 8th grade math in Mathematics
[blind state] Standards of Excellence, ISTE Standards for Teachers and
Students, and Social Justice Standards from Teaching Tolerance Anti-bias
Framework. For 8th grade science and math, PSTs identified the content
standards, Waves & Media in science and Solving Systems of Equations in
math. For the NGSS crosscutting concepts, they recognized many possible
options, including cause and effect (6 PSTs listed this standard), structure
and function (4), and patterns (4). In addition, for the NGSS practices, they
recognized develop and use models (8), planning and carrying out investiga-
tions (3), engaging in argument from evidence (1), and asking questions and
defining problems (1). This variation in identifying standards suggests that
PSTs could apply the computing-integration activity in their classroom to
flexibly achieve NGSS crosscutting concepts and science and engineering
practices.

PSTs similarly identified several applicable standards for ISTE teach-
ers, ISTE students, and social justice. The program was updating to the new
ISTE standards during the project semester, so their responses are based on
the previous version. For the teacher standards, they identified design and

Middle Science Computing Integration with Preservice Teachers 45

develop digital age learning experiences and assessments (10 PSTs listed
this standard), facilitate and inspire student learning and creativity (8), and
model digital age work and learning (4). For the student standards, PSTs
identified creativity and innovation (9), communication and collaboration
(4), research and information fluency (3), critical thinking, problem solving,
and decision making (4), digital citizenship (1), and technology operations
and concepts (3). They also identified social justice standards for Identity,
#1 (2) and #4 (2); Diversity, #6 (5), #9 (2), and #10 (2); Justice, #14 (3); and
Action, #17 (2) and #20 (2). Because the PSTs thought that the computing-
integration activity aligned with several standards, they can apply the activ-
ity to flexibly achieve these standards in their classroom.

Applications of Computing Integration in Science and Other Subjects

During the CT instruction in class, PSTs were asked reflection ques-
tions after introducing a set of CT concepts related to the five main con-
cepts to connect the new information to their prior knowledge. When asked
to share with their table after independent reflection, each table had lively
discussions that were recorded through field notes. The point of these reflec-
tion items was not to create an exhaustive list of overlap between science
and CT, but to help PSTs recognize that they already knew something about
the concepts that were being discussed and to build upon that knowledge
to learn about integrating computing in their field. Below are the responses
that groups shared with the whole class. For example, when asked, “What
problems in your field need to be decomposed?” PSTs gave examples in-
cluding cycles (like the rock cycle so you can focus on how one part hap-
pens), graphing, and the scientific method.

•	 How would you apply defining parameters, conditionals, and test cases
to teaching? – Come up with what-if scenarios for teaching (e.g., if
computers aren’t working, if you were doing an activity outside but
there was bad weather); Set parameters for projects (e.g., size of bottle
for making bottle rockets); Come up with rubrics for projects to set
parameters and expectations

•	 How do mental models, logical thinking, iterative design, or sequencing
apply to your field? – Scientific method relates to all of them (mental
model of how experiment will go, logical thinking for hypotheses/rea-
soning, iterative design when things don’t go as planned, and a specific
sequence of steps); Iterative design for working on experiments and
projects; Logical thinking is related to reasoning in science

46 Margulieux and Yadav

•	 What do you wish you could automate in your field? – Grading; Running
experiments repeatedly; Data collection – especially over a long time

•	 What problems in your field need to be decomposed? – Cycles, like
the rock cycle so you can focus on how one part happens; Graphing;
Scientific method

PSTs made connections to science teaching in their pre-student-teach-
ing assignments and post-student-teaching reflections. Five of their ideas
centered on data collection, analysis, and visualization, “I would love to in-
corporate this in my future classroom by making a lesson plan around mak-
ing a graph in class together; showing them how to make science and tech-
nology fun.” Four focused on promoting CT in science without include an
activity that used programming, such as “In science computational thinking
has a place. Most spacecrafts operate automatically. I could have a lesson
that explains how they operate along with the computational thinking that
went into its development.” Two others emphasized that the computing inte-
grated activity allowed them to deepen students’ knowledge of topics, “The
lesson presented helped to build upon students’ understanding of their exist-
ing knowledge, and by manipulating the waves in pencil code, they were
able to learn more, such as what frequency is, and what the different vari-
ables do.”

In the pre-student-teaching assignment, five PSTs provided novel ex-
amples of CT in other subjects These examples tended to focus on using CT
as a process for solving problems.

“CT implements a thorough process through which we can learn
and create. It is a specific way to solve problems and work towards
a solution in ways in which a computer may. It integrates computa-
tional skills into non-computing arenas that helps students to come
to their own meaningful explanations of concepts. It’s very useful
when you need to create and/or use an algorithm for a project such
as analyzing poetry or finding patterns that follow a mathematical
rule.”

In the post-student-teaching reflection, PSTs discussed their interest in
applying CT and computing integrated activities to other subjects that they
might also teach. The subjects include math, “I did like the PencilCode to
an extent and when playing around with it outside of class, I came up with
a fun possible activity with constructing right triangles in PencilCode and
practicing the Pythagorean Theorem,” English, “I would also like to utilize
it into any of the English classes that I teach by using it for reading com-
prehension and analysis. I also like the entire process feels very organic.
It’s not a wild approach because a lot of people already follow these steps

Middle Science Computing Integration with Preservice Teachers 47

without thinking about it or without giving a name to it. As a teacher who
wants to teach a discussion based class I think this is also useful in generat-
ing conversations in the classroom about the material,” and history, “I would
definitely be able to use this in science but also in history if I choose, I can
do it with science with countless data sets that we may come up with in
the course of our learning and I can use it in History to show the route of a
group of people, or the death toll from a war.”

DISCUSSION

These results have implications for future implementations on CT with-
in teacher education. First, activities took longer than expected, especially
for the CT general instruction in class when we engaged in activities and
reported back to the group. Second, the computing aspects of the CT gen-
eral instruction needed to be scaffolded more, or perhaps the programming
language needs to be introduced earlier to give students a better idea of what
a programming language is. Third, lower-level explanations of the program-
ming language, even though it is block-based, is needed. For example, one
PST did not recognize that the block for dividing (_ / _) was for division,
so we should not assume that the purpose of blocks are intuitive. Fourth,
PSTs were uncertain about their ability to debug. We could include common
mistakes made in the activities, like misspelling wavelength, during the in-
troduction to the computing-integrated activity and ask PSTs to debug them
to gain practice and confidence at debugging.

Overall, the integration was successful for teaching PSTs fundamental
CT concepts and preparing them to teach a computing-integrated activity.
CT and computing-integrated activities, despite being unfamiliar to most
PSTs and anxiety-inducing for some, were embraced enthusiastically by
all but one PST by the end of the month. Though the intervention took a
month, it actually was one week of class time in a single course, one sub-
stantial assignment, and one student teaching experience. The PSTs engaged
in several other important and unrelated class and preparation activities dur-
ing the intervention, which perhaps helped them to make the many connec-
tions to other subjects that they did. One major limitation of the research
is that we have not followed up with the PSTs after their final reflections,
and we do not know whether they continue to be interested in computing-
integration activities or will use them in their classrooms. Based on the en-
thusiasm from some PSTs and having already used them in a classroom, we
expect that they will continue to use them, “I am just excited to be able to

48 Margulieux and Yadav

learn it inside and out to use this program and others like it to bridge the
gap between known information and newly acquired information for my
students.”

Acknowledgments

Our thanks to the PSTs and students who consented to be part of this
study. Drs. Patrick Enderle and Natalie King were also instrumental in the
design and implementation of the intervention.

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal,
55(7), 832-835.

Armoni, M. (2016). Computer science, computational thinking, programming, cod-
ing: the anomalies of transitivity in K-12 computer science education. ACM In-
roads, 7(4), 24-27.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What
is involved and what is the role of the computer science education community?.
ACM Inroads, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing
the development of computational thinking. In Proceedings of the 2012 Annual
Meeting of the AERA, Vancouver, Canada (Vol. 1, p. 25).

Cuny, J., Snyder, L., & Wing, J. M. (2011). Computational thinking—what and
why?. https://www.cs.cmu.edu/link/ research-notebook-computational-think-
ing-what-and-why

DeLyser, L. A., Goode, J., Guzdial, M., Kafai, Y., & Yadav, A. (2018). Priming the
computer science teacher pump: Integrating computer science education into
schools of education. Report published by CSforAll (pp. 1-62).

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Com-
munications of the ACM, 60(6), 33-39.

Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science ed-
ucation. In Visualization in Science Education (pp. 9-27). Springer, Dordrecht.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state
of the field. Educational Researcher, 42(1), 38-43.

Hsieh, H., & Shannon, S. E. (2005). Three approaches to qualitative content analy-
sis. Qualitative Health Research, 15(9), 1277–1288.

Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N., & Grise, K.
(2018). Computational what? Relating computational thinking to teaching.
TechTrends, 62, 574-584. https://doi.org/10.1007/s11528-018-0290-9

Middle Science Computing Integration with Preservice Teachers 49

Mouza, C., Nandakumar, R., Yilmaz Ozden, S., & Karchmer-Klein, R. (2017). A
longitudinal examination of preservice teachers’ Technological Pedagogical
Content Knowledge in the context of undergraduate teacher education. Action
in Teacher Education, 39(2), 153-171.

Sands, P., Yadav, A., & Good, J. (2018). Computational Thinking in K-12: In-service
teacher perceptions of computational thinking. In M. S Khine. (Ed.). Computa-
tional Thinking in the STEM Disciplines (pp. 151-164). Springer.

Qian, Y., Hambrusch, S., Yadav, A., & Gretter, S. (2018). Who needs what: Recom-
mendations for designing effective online professional development for com-
puter science teachers. Journal of Research on Technology in Education, 50(2),
164-181.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky,
U. (2016). Defining computational thinking for mathematics and science class-
rooms. Journal of Science Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 366(1881), 3717-3725.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computa-
tional thinking in elementary and secondary teacher education. ACM Transac-
tions on Computing Education, 14(1), 5-16.

