Hispanics/Latinos

CAREER: Supporting Elementary Science Teaching and Learning by Integrating Uncertainty Into Classroom Science Investigations

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

Lead Organization(s): 
Award Number: 
1749324
Funding Period: 
Fri, 06/01/2018 to Wed, 05/31/2023
Full Description: 

The goal of this study will be to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning. The framework will rest on the notion that productive uncertainty should be carefully built into students' empirical learning experiences in order to support their engagement in scientific practices and understanding of disciplinary ideas. To re-conceptualize the role of empirical investigations, the study will focus on the transitions between the experiences and processes students seek to understand, classroom investigations, evidence, and explanatory models as opportunities for sense-making, and how uncertainty can be built into these transitions. The project's underlying assumption is that carefully implementing these forms of uncertainty will help curriculum developers and teachers avoid the oversimplified investigations that are prevalent in K-8 classrooms that stand in stark contrast to authentic science learning and the recommendations of the Framework for K-12 Science Education (National Research Council, 2012). Accordingly, the project will seek to develop curriculum design guidelines, teacher tools, professional development supports, and four elaborated investigations, including sets of lessons, videos, and assessments that embed productive uncertainty for second and fifth graders and designed for use with linguistically, culturally, and socio-economically diverse students.

The hypothesis of this work is that if specific forms of scientific uncertainty are carefully selected, and if teachers can implement these forms of uncertainty, elementary students will have more robust opportunities to develop disciplinary practices and ideas in ways consistent with the Next Generation Science Standards (NGSS) (Lead States, 2013). Employing Design-Based Research, the three research questions will be: (1) What opportunities for sense-making do elementary school empirical investigations afford where we might strategically build uncertainty?; (2) How can we design learning environments where uncertainty in empirical investigations supports opportunities for learning?; and (3) In classrooms with sustained opportunities to engage with uncertainty in empirical investigations, what progress do students make in content understandings and the practices of argumentation, explanation, and investigation? The work will consist of three design cycles: Design Cycle 1 will involve two small groups of six teachers in adapting their curricula to incorporate uncertainty, then describe how students engage around uncertainty in empirical investigations. Design Cycle 2 will involve the same small groups in implementing and refining task structures, tools, and teacher instructional strategies. In Design Cycle 3, teachers and researchers will further refine lesson materials, assessments, and supports. The project will partner with one school district and engage in design research with groups of teachers to develop: (1) a research-based description, with exemplars of opportunities for student sense-making within empirical investigations at both early and upper elementary grades; (2) a set of design principles and tools that allow teachers to elicit and capitalize on sense-making about uncertainty in investigations; and (3) four elementary investigations elaborated to incorporate and exemplify the first two products above. These materials will be disseminated through a website, and established networks for supporting implementation of the NGSS. An advisory board will oversee project progress and conduct both formative and summative evaluation.

Integrating Chemistry and Earth Science

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

Award Number: 
1721163
Funding Period: 
Tue, 08/15/2017 to Wed, 07/31/2019
Full Description: 

This Integrating Chemistry and Earth science (ICE) project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards. The overarching goal of the project is to develop teacher capacity to teach and evaluate student abilities to use the practices of scientists and concepts from Earth science and chemistry to understand important phenomena in their immediate, familiar environments. The project has the potential to serve as a model for how to make cutting edge science directly accessible to all students. The project is a collaborative effort that engages scientists, science education researchers, curriculum developers, school curriculum and instruction leaders, and science teachers in the longer term challenge of infusing Earth science concepts and practices across the core high school science courses.

Current guidelines and standards for science education promote learning that engages students in three interrelated dimensions: disciplinary core ideas, scientific practices, and crosscutting ideas. This project is guided by the hypothesis that when provided sustained opportunities to engage in three-dimensional learning experiences, in an integrated Earth science and chemistry context, students will improve in their ability to demonstrate the coordination of disciplinary core ideas, scientific practices, and crosscutting concepts when solving problems and developing explanations related to scientific phenomena. This project will employ a design based research approach, and during the two development-enactment-analysis-and-redesign cycles, the project team will collect student assessment data, teacher interview data, observational data from lessons, teacher surveys, and reflective teacher logbooks. These collected data will provide information about how teachers implement the lessons, what students do during the lessons, and what students learn from them that will lead to better design and a better understanding of student learning. This information will be used to inform the modification of lessons from cycle to cycle, and to inform the professional development materials for teachers. The research agenda for the project is guided by the following questions: 1. What are the design features of ICE lessons that support teachers in enacting three-dimensional instruction within the context of their classroom? 2. What are the design features of embedded three-dimensional assessments that yield useful classroom data for teachers and researchers regarding their students' abilities to integrate core ideas, scientific practices, and crosscutting concepts? 3. What is the nature of student learning related to disciplinary core ideas, scientific practices, and crosscutting concepts that results from students' engagement in ICE lesson sets? 4. What differences emerge in student engagement and learning outcomes for ICE lessons that incorporate local phenomena or data sets as compared to lessons that do not? 5. What contextual factors (i.e., school context, administrative support, time constraints, etc.) influence teachers' implementation of three-dimensional instruction embedded within ICE lessons?


Project Videos

2019 STEM for All Video Showcase

Title: Integrating Chemistry and Earth Science (ICE)

Presenter(s): Alan Berkowitz, Vonceil Anderson, Bess Caplan, Kevin Garner, & Jonathon Grooms


Building a Community of Science Teacher Educators to Prepare Novices for Ambitious Science Teaching

This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.

Lead Organization(s): 
Award Number: 
1719950
Funding Period: 
Tue, 08/01/2017 to Tue, 07/31/2018
Full Description: 

There is a growing consensus among science teacher educators of a need for a shared, research-based vision of accomplished instructional practice, and for teacher education pedagogies that can effectively prepare preservice science teachers to support the science learning of students from all backgrounds. This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. This conference is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching. The conference has two goals. The first goal is to develop a shared vision and language about effective pedagogy of science teacher preparation, focusing on ambitious science teaching and practice-based approaches to science teacher preparation. The second goal is to initiate a professional community that can generate, test, revise, and disseminate a set of resources (curriculum materials, tools, videos, models of teacher educator pedagogies, etc.) to support teacher educators.

There are immediate and long-term broader impacts that will result from this conference. One immediate impact is that this conference will set forth an actionable research agenda for the participants and the field to take up around ambitious science teaching and practice-based teacher education. Such an agenda will help shape new work, involving institutional collaborations,teacher preparation programs, and national organizations. Such an outcome has the potential to immediately impact the work of the conference participants and their own teacher preparation programs. In the long-term, this conference provides an opportunity for the participants to consider how to use ambitious science teaching to address issues of equity and social justice in science education and schools. In addition, the broader impacts of this conference will be to spread a vision of science teaching and practice-based teacher preparation in which students' ideas and experiences are the raw material of teachers' work.

Exploring the Potential of Tablets as Early Math Resources for Urban Kindergarteners in Schools and Homes

This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources, and how the resources then relate to kindergartners mathematics learning.

Lead Organization(s): 
Award Number: 
1744202
Funding Period: 
Tue, 08/01/2017 to Tue, 07/31/2018
Full Description: 

This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. An important question for schools as tablet devices become more accessible is how to effectively use them in primary grades, especially kindergarten. In addition, since the devices are portable, how children use the resources such as games for mathematics learning at home is also important to understand. This project is set in a high-needs school district with a large number of low-income children. The project provides an opportunity to learn about the potential role of tables and digital resources in early grades through the analysis of assessment data, user analytic data documenting how the resources were used, and survey data from teachers and families.

Most studies of digital learning resources have been small-scale or focused on engagement. This study offers the opportunity to investigate the relationship between the use of these resources and learning outcomes using a quasi-experimental design. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources and how the resources then relate to kindergartners mathematics learning. Assessments of students' learning will focus on number, geometry and measurement concepts. The learner analytic data from the tablets will document the use of the resources on the tablets. Surveys and demographic data will also be collected to document how the tablets were used. Results of the study should inform implementation of tablet use by schools with particular attention to how they are used across in-class and at-home settings.

Project Accelerate: University-High School AP Physics Partnerships

Project Accelerate blends the supportive structures of a student's home school, a rigorous online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The project could potentially lead to the success of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Lead Organization(s): 
Award Number: 
1720914
Funding Period: 
Tue, 08/01/2017 to Fri, 07/31/2020
Full Description: 

Project Accelerate brings AP Physics 1 and, eventually, AP Physics 2 to students attending schools that do not offer AP Physics. The project will enable 249 students (mostly under-served, i.e., economically disadvantaged, ethnic minorities and racial minorities) to enroll in AP Physics - the students would otherwise not have access. These students either prepare for the AP Physics 1 exam by completing a highly interactive, conceptually rich, rigorous online course, complete with virtual lab experiments, or participate in an accredited AP course that also includes weekly hands-on labs. In this project, the model will be tested and perfected with more students and expanded to AP Physics 2. Further, model replication will be tested at an additional site, beyond the two pilot sites. In the first pilot year in Massachusetts at Boston University, results indicated that students fully engaged in Project Accelerate are (1) at least as well prepared as peer groups in traditional classrooms to succeed on the AP Physics 1 exam and (2) more inclined to engage in additional STEM programs and to pursue STEM fields and programs than they were prior to participating. In the second year of the pilot study, Project Accelerate doubled in size and expanded in partnership with West Virginia University. From lessons learned in the pilot years, key changes are being made, which are expected to increase success. Project Accelerate provides a potential solution to a significant national problem of too few under-served young people having access to high quality physics education, often resulting in these students being ill prepared to enter STEM careers and programs in college. Project Accelerate is a scalable model to empower these students to achieve STEM success, replicable at sites across the country (not only in physics, but potentially across fourteen AP subjects). The project could potentially lead to the success of tens of thousands of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

Project Accelerate blends the supportive structures of a student's home school, a private online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The goals of the project are: 1) have an additional 249 students, over three years, complete the College Board-accredited AP Physics 1 course or the AP Physics 1 Preparatory course; 2) add an additional replication site, with a total of three universities participating by the end of the project; 3) develop formal protocols so Project Accelerate can be replicated easily and with fidelity at sites across the nation; 4) develop formal protocols so the project can be self-sustaining at a reasonable cost (about $500 per student participant); 5) build an AP Physics 2 course, giving students who come through AP Physics 1 a second year of rigorous experience to help further prepare them for college and career success; 6) create additional rich interactive content, such as simulations and video-based experiments, to add to what is already in the AP Physics 1 prep course and to build the AP Physics 2 prep course - the key is to actively engage students with the material and include scaffolding to support the targeted population; 7) carry out qualitative and quantitative education research, identifying features of the program that work for the target population, as well as identifying areas for improvement. This project will support the growing body of research on the effectiveness of online and blended (combining online and in-person components) courses, and investigate the use of such courses with under-represented high school students.

Building Capacity to Retain Underrepresented Students in STEM Fields

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions.

Lead Organization(s): 
Award Number: 
1741748
Funding Period: 
Mon, 05/01/2017 to Mon, 04/30/2018
Full Description: 

The NSF invests in a number of programs targeting underrepresented populations and institutions relative to its meeting its goals for broadening participation in STEM. This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers. The target audience for the workshop will be the participating institutions and their undergraduate students, in partnership with local K-12 schools.

In collaboration with Quality Education for Minority and MERAssociates, Rutgers University Newark will provide a unique setting to convene more than 100 participants to attend the workshop. The participants will include deans and/or department chairs; STEM faculty; educational researchers, and institutional representatives such as Vice Presidents of Academic Affairs, Provosts, or other administrators. The participants will work in teams of 4-5 to address science research topics and activities related to curriculum development, teacher support, and student engagement. Outcomes from the workshops will provide insights about successful strategies, areas of future research, and awareness about the need for better intervention models that support underrepresented minority students in STEM.

Youth Participatory Science to Address Urban Heavy Metal Contamination

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise.

Award Number: 
1720856
Funding Period: 
Mon, 05/15/2017 to Thu, 04/30/2020
Full Description: 

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project is a collaboration of teachers in the Chicago Public Schools, science educators, chemists, and environmental scientists from the University of Illinois at Chicago, Northwestern University, Loyola University, and members of the Chicago Environmental Justice Network. The project is significant because it leverages existing partnerships and builds on pilot projects which will be informed by a corresponding cycle of research on teachers' learning and practice. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.

The goal is to provide a network of intellectual and analytical support to high school chemistry teachers engaged in customizing curricula in response to urban environmental concerns. The project will use an annual summer institute where collaborators will develop curriculum and procedures for collecting soil and water samples. In the project, the teachers and students will work with university scientists to analyze these samples for heavy metals, and students will share their results in community settings. The study design will be multiple case and be used to study the content knowledge learned and mobilized by participating teachers as they develop these authentic projects. The project includes explicit focus on the professional development of high school science teachers while it also aims to create rich learning opportunities for underrepresented high school students in STEM fields. The contextualized science concepts within students' everyday experiences or socio-scientific issues will likely have a positive impact on student motivation and learning outcomes, but the experiences of urban students are less likely to be reflected by the curriculum, and the practices of effective secondary science teachers in these contexts are under-examined.

The following article is in press and will be available soon:

Morales-Doyle, D., Childress-Price, T., & Chappell, M. (in press). Chemicals are contaminants too: Teaching appreciation and critique of science in the era of NGSS. Science Education. https://doi.org/10.1002/sce.21546

Development of the Electronic Test of Early Numeracy

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish that will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures.

Partner Organization(s): 
Award Number: 
1621470
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish, focused on number and operations. The assessment will incorporate a learning trajectory that describes students' development of the understanding of number. The electronic assessment will allow for the test to adapt to students' responses and incorporate games to increase children's engagement with the tasks. These features take advantage of the electronic format. The achievement test will be designed to be efficient, user-friendly, affordable, and accessible for a variety of learning environments and a broad age range (3 to 8 years old). The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures. This project is funded by the Discovery Research Pre-K-12 Program, which funds research and development of STEM innovations and approaches in assessment, teaching and learning.

The e-TEN will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The items will be designed using domain-based learning trajectories that describe students' development of understanding of the topics. The test will be designed with some key characteristics. First, it will be semi-adaptive over six-month age spans. Second, it will have an electronic format that allows for uniform implementation and an efficient, user-friendly administration. The test will also be accessible to Spanish speakers using an inclusive assessment model. Finally, the game-based aspect should increase children's engagement and present more meaningful questions. The user-friendly aspect includes simplifying the assessment process compared to other tests of numeracy in early-childhood. The first phase of the development will test a preliminary version of the e-TEN to test its functionality and feasibility. The second phase will focus on norming of the items, reliability and validity. Reliability will be assessed using Item Response Theory methods and test-retest reliability measures. Validity will be examined using criterion-prediction validity and construct validity. The final phase of the work will include creating a Spanish version of the test including collecting data from bilingual children using both versions of the e-TEN.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Pages

Subscribe to Hispanics/Latinos