Professional Development

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Felton)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101456
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

Connecting Elementary Mathematics Teaching to Real-World Issues (Collaborative Research: Thanheiser)

This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

Lead Organization(s): 
Award Number: 
2101463
Funding Period: 
Thu, 07/01/2021 to Sun, 06/30/2024
Full Description: 

There are long-standing calls to make mathematics more meaningful, relevant, and applicable both inside and outside of the K-12 classroom. In particular, there is a growing recognition that mathematics is a valuable tool for helping students understand important real-world issues that affect their lives and society. Further, mathematics can support students in becoming mathematically literate and engaged democratic citizens. Despite the increased interest in connecting mathematics to real-world issues in the classroom, many teachers feel unprepared to do so. This project will engage students and teachers in rich, real-world math tasks; will support future teachers and mathematics educators in adapting, designing, and implementing similar tasks; and will provide a basis for further research on the most effective ways to design and implement real-world tasks in the mathematics classroom.

The three goals of the Connecting Elementary Mathematics to the World project are: (1) To explore how mathematics teachers adapt, design, and enact tasks that connect mathematics to the real world. We will study the teaching practices of the project team as they engage in this work in two summer camps and in elementary classrooms at two sites. (2) To develop a collection of exemplar tasks and rich records of practice for each task. These records of practice will detail the mathematical and real-world learning goals, background knowledge needed for both goals, common student responses, and videos or vignettes of the task in progress. A team of six teachers at two sites will be recruited to collaborate with the team throughout the project. Teachers will provide input and feedback on the design of, appropriateness of, and relevance of the tasks and the support materials needed to implement the real-world tasks. Initial tasks will be field tested with elementary students and additional tasks will be developed for subsequent week-long summer camps and for teaching in elementary classrooms. (3) To research both the development and enactment of these tasks. We will develop a theoretical framework for creating and implementing real-world tasks that can inform future practice and research in this area. The research products of this project will result in (a) an understanding of effective teaching and design practices for connecting mathematics to real-world issues, (b) a theoretical framework of how these practices are interconnected, and (c) how these practices differ from practices when teaching typical school mathematics tasks.

Supporting High School Students and Teachers with a Digital, Localizable, Climate Education Experience

This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.

Lead Organization(s): 
Award Number: 
2100808
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Teachers regularly adapt curriculum materials to localize for their school or community context, yet curriculum materials are not always created to support this localization. Developing materials that are intentionally designed for localization has potential to support rich science learning across different contexts, especially for a topic like climate change where global change can have varied local effects. This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. It will develop and test a design process bringing together national designers and teachers across the country. Teachers will be supported through professional learning to adapt from the base unit to create a local learning experience for their students. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions. The unit will be fully digital with rich visual experiences, simulations, and computer models that incorporate real-time data and the addition of localized data sets. These data-based learning experiences will support students in reasoning with data to ask and answer questions about phenomena. Research will study the unit development and localization process, the supports appropriate for teachers and students, and the impact on classroom practice.

The project will adopt an iterative design process to create a Storyline base unit, aligned to Next Generation Science Standards, for localization, piloting, and an implementation study with 40 teachers. To support teacher learning, the project adopts the STeLLA teacher professional learning model. To support student learning, the project addresses climate change content knowledge with a focus on socioscientific issues and students’ sense of agency with environmental science. The project will research how the educative features in the unit and the professional development impact teachers’ practice, including their content knowledge, comfort for teaching a socioscientific issue, and their ability to productively localize materials from a base unit. The study uses a cohort-control quasi-experimental design to examine the impact of the unit and professional learning experience on dimensions of students' sense of agency with environmental science. The study will also include exploratory analyses to examine whether all students benefit from the unit. It uses a pre-post design to examine impacts on teacher knowledge and practice.

Fostering Computational Thinking through Neural Engineering Activities in High School Biology Classes

This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.

Lead Organization(s): 
Award Number: 
2101615
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Computational thinking (CT) is a set of processes to identify and solve problems using algorithms or steps, and can be applied not only in computer science but in other disciplines. This project will develop and study a curriculum and app that support CT in a high school biology unit. Through a month-long neural engineering unit, approximately 500 students in 18 classes will measure their own muscle and brain activity with a low-cost, portable, wearable technology. Students will then analyze the data and design a brain-computer interface to turn neural signals into real-world output (e.g., a mechanical claw controlled by brain activity). The curriculum will be supported by: (1) a web-based instructional application that will guide students through the neural engineering design process; (2) neuroscience and engineering PhD students and postdocs acting as STEM mentors; and (3) a professional development program for teachers and mentors. The goal is to increase the students’ knowledge and interest regarding neurobiology, engineering, and computational thinking. This can contribute to their long-term capacity to pursue STEM careers. By integrating CT education into high school science, this expands the accessibility of the engineering and computing experiences beyond other efforts that focus primarily on programming and computer science courses.

The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply computational thinking principles. The project will produce curriculum materials for the neural sensors and associated data practices. It will develop an app to help students design and construct a brain-computer interface, including computational elements like coding blocks, sensor and data simulation, and connecting to external devices. The five proposed research questions of the study are: How does students’ CT change throughout their participation in the neural engineering design process? What is the cross-cultural validity of two CT scales in a sample of high school students in the US? How does the process of collecting and analyzing real-world data relate to students’ experience of he engineering design process? How do students’ attitudes toward STEM change over the course of their participation in a neural engineering design process? How does teachers’ self-efficacy for fostering CT in their students via engineering design change through their participation in professional development and in implementation of the proposed curriculum?

Empowering Teachers to See and Support Student Use of Crosscutting Concepts in the Life Sciences

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

Lead Organization(s): 
Award Number: 
2100822
Funding Period: 
Sun, 08/01/2021 to Wed, 07/31/2024
Full Description: 

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences. In response to the calls set forth by the Framework for K-12 Science Education and Next Generation Science Standards (NGSS), the field has most successfully researched and developed assessment tools for disciplinary core ideas and the science and engineering practices. The CCCs, which serve as the connective links across science domains, however, remain more abstractly addressed. Presently, science educators have little guidance for what student use of CCCs looks like or how to assess and nurture such use. This project, with its explicit attention to the CCCs, advances true three-dimensional scientific understanding in both research and the classroom. Leveraging formative assessment as a vehicle for student and teacher development taps into proven successful instructional strategies (e.g., sharing visions of successful learning, descriptive feedback, self-assessment), while also advancing formative assessment, itself, by strengthening and illustrating how these strategies may focus on the CCCs. Further, a strengths-based approach will center culturally related differences in students’ use of CCCs to achieve more equitable opportunities to engage in classroom sensemaking practices. This work impacts the field of science education by 1) enabling a more thorough realization of NGSS ideals, 2) strengthening teachers’ abilities to identify diverse demonstrations of CCCs, and 3) showcasing the impact of novel classroom tools to sharpen teachers’ abilities to solicit, notice, and act upon evidence of emergent student scientific thinking within their instructional practices.

This design-based implementation research project will engage teachers in the iterative development and refinement of rubrics that support three-dimensional science understanding through formative assessment. The high school biology classrooms that compose the study site are engaged in ambitious science teaching-inspired instruction. An inductive, bottom-up approach (Brookhart, 2013) will allow researchers, teachers, and students to co-construct rubrics. Analysis of classroom observations, artifact collection, interviews with teachers and students, and expert-panel ratings will produce a rubric for each CCC that integrates relevant science and engineering practices and is applicable across a range of disciplinary core ideas. These rubrics will illustrate progressions of increasingly advanced use of each of the CCCs, to guide the construction, pursuit, and assessment of learning goals. There will be two design cycles that allow for the collection of validity evidence and produce rubrics with the potential for broad application by educators. Complementary lines of qualitative and quantitative (i.e., psychometric) analysis will contribute to development and validation of the rubrics and their formative uses. Project inquiry will focus on 1) how the rubrics can represent CCCs for key disciplinary practices, 2) the extent to which teachers’ and students’ understandings of the rubrics align, and 3) how implementation of the rubrics impacts teachers’ and students’ understandings of the CCCs.

Supporting Instructional Decision Making: The Potential of Automatically Scored Three-Dimensional Assessment System (Collaborative Research: Zhai)

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

Lead Organization(s): 
Award Number: 
2101104
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 
This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems. Led by collaborators from University of Georgia, Michigan State University, University of Illinois at Chicago, and WestEd, the project team will develop computer scoring algorithms, a suite of AutoRs, and an array of pedagogical content knowledge supports (PCKSs). These products will assist middle school science teachers in the use of 3D assessments, making informative instructional changes, and improve students’ 3D learning. The project will generate knowledge about teachers’ uses of 3D assessments and examine the potential of automatically scored 3D assessments.
 
The project will achieve the research goals using a mixed-methods design in three phases. Phase I: Develop AutoRs. Machine scoring models for the 3D assessment tasks will be developed using existing data. To support teachers’ interpretation and use of automatic scores, the project team will develop AutoRs and examine how teachers make use of these initial reports. Based on observations and feedback from teachers, AutoRs will be refined using an iterative procedure so that teachers can use them with more efficiency and productivity. Phase II: Develop and test PCKSs. Findings from Phase I, the literature, and interviews with experienced teachers will be employed to develop PCKSs. The project will provide professional learning with teachers on how to use the AutoRs and PCKSs. The project will research how teachers use AutoRs and PCKSs to make instructional decisions. The findings will be used to refine the PCKSs. Phase III: Classroom implementation. In this phase a study will be conducted with a new group of teachers to explore the effectiveness and usability of AutoRs and PCKSs in terms of supporting teachers’ instructional decisions and students’ 3D learning. This project will create knowledge about and formulate a theory of how teachers interpret and attend to students’ performance on 3D assessments, providing critical information on how to support teachers’ responsive instructional decision making. The collaborative team will widely disseminate various products, such as 3D assessment scoring algorithms, AutoRs, PCKSs, and the corresponding professional development programs, and publications to facilitate 3D instruction and learning.

Doing the Math with Paraeducators: Enhancing and Expanding and Sustaining a Professional Development Model in PreK to Grade 3 Math Classrooms

This project builds on exploratory work engaging in mathematics professional learning with paraeducators to enact and study a professional learning experience with paraeducators focused on teaching and learning mathematics in grades PreK-3.

Lead Organization(s): 
Award Number: 
2101425
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

Paraprofessionals (often referred to as paras) in educational settings have critical roles in supporting student learning in classrooms, particularly in the elementary grades where paras are much more prevalent. Yet little is known about the professional needs of paraeducators and how they can be supported in learning to teach mathematics in the early elementary grades. This project builds on exploratory work engaging in mathematics professional learning with paras to enact and study a professional learning experience with paraeducators focused on teaching and learning mathematics in grades PreK-3. This work will take place in over the course of two years in two different large urban school districts in different parts of the country. This model includes professional development experiences for paras and the teaches with which they work, support for teachers to improve their guidance for paras as they work together to support mathematics learning, professional learning support for school-based mathematics coordinators, and the study of the model's effectiveness through surveys, interviews, and classroom observations.

The project begins with the revision of the professional development model based on prior exploratory work, expanding the model to include aspects geared towards teacher and district-based support as well as strengthening the professional learning opportunities for paras. This phase of the project will develop measurement tools to assess the impact of the para and teacher learning, including the use of surveys to assess the practice and confidence of paras in implementing ambitious mathematics instruction, observation tools to measure para instructional behaviors, individual and focus group interviews to provide paras and their teacher mentors opportunities to describe their learning in depth, and analytical strategies related to the professional development artifacts. The second year will implement the model with 20 paras and their mentor teachers, along with 8 district-based mathematics facilitators. The second year of the project will engage an additional 20 new paras in each of the two districts involved with the project. The final year will focus on data analysis and the development of a generalizable model for para-teacher mentor professional development in mathematics. Dissemination of such a model is likely to have a meaningful impact on professional learning opportunities for this traditionally undersupported population and will support stronger mathematics outcomes for PreK-3 students.

Supporting Teachers to Teach Mathematics through Problem Posing

This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices.

Lead Organization(s): 
Award Number: 
2101552
Funding Period: 
Sun, 08/01/2021 to Thu, 07/31/2025
Full Description: 

This project aims to support teachers to engage their students in mathematical problem posing (problem-posing-based learning, or P-PBL). P-PBL is a powerful approach to the teaching and learning of mathematics, and provides students with opportunities to engage in authentic mathematical practices. For example, conjecturing in mathematics, a form of problem posing, often plays an important role in solving complex problems, and problem posing is an important component of mathematical modeling. Yet despite its importance, widely used curriculum materials fail to incorporate P-PBL in substantial and consistent ways, leaving teachers with few resources to enact this process. This project will develop problem-posing lessons and illustrative cases of teachers implementing P-PBL that will not only support teachers to develop a vision of what P-PBL looks like and how to implement it in their own classrooms, but will also serve as rich resources for professional development (PD) providers. This project will generate valuable findings about teaching using problem posing for district administrators, mathematics teachers, educators, and researchers as well as curriculum developers and policy makers. The team will develop and pilot a set of 20−30 research-based P-PBL cases that provide critical details for the implementation of P-PBL and reveal “lessons learned” from the development process.

The project promises broader impact on the field of mathematics education as the first goal is to support teachers to teach mathematics through engaging their students in mathematical problem posing. By guiding students to construct and investigate their own problems, P-PBL both helps to create mathematical learning opportunities and develops students’ mathematical agency and positive mathematical identities. A networked improvement community of teachers and researchers will integrate problem posing into daily mathematics instruction and continuously improve the quality of P-PBL through iterative task and lesson design. The intellectual merit of this project is its contribution of new and important insights about teaching mathematics through problem posing. This will be realized through the second project goal which is to longitudinally investigate the promise of supporting teachers to teach with P-PBL for enhancing teachers’ instructional practice and students’ learning. A quasi-experimental design coupled with design-based research methodology and improvement science will be used to understand how, when, and why P-PBL works in practice. Specifically, we plan to follow a sample of 36 teachers and their approximately 3,600 students from six middle schools for multiple years to longitudinally explore the promise of P-PBL for developing teachers’ beliefs about problem posing, their beliefs about P-PBL, and their actual instructional practice. We will also investigate students’ learning as measured by problem-posing performance, problem-solving performance, and mathematics disposition. The findings of the project will add not only to the field’s understanding of the promise of supporting teachers to integrate P-PBL into their mathematics instruction, but also to its understanding of the challenges that teachers face when engaging in a networked improvement community that is focused on improving tasks and lessons by integrating P-PBL.

Practice-Driven Professional Development for Algebra Teachers

This project seeks to develop a personalized, scalable PD approach that centers on and builds from algebra teachers’ practices and individual strengths. The project will focus its PD efforts on instructional actions that are tailored to teachers' existing practice, can be readily adopted, and are easily accessible.

Lead Organization(s): 
Award Number: 
2101508
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Professional development (PD) is a direct attempt to improve the quality of instruction for teachers already in the classroom. Traditional PD is typically costly in terms of time and money, and efforts tend to be delivered as a one-size-fits-all approach. Furthermore, for teachers who adopt novel techniques such as flipped instruction, there may be few resources to support their efforts. This project seeks to develop a personalized, scalable PD approach that centers on and builds from algebra teachers’ practices and individual strengths. The project will focus its PD efforts on instructional actions that are tailored to teachers' existing practice, can be readily adopted, and are easily accessible. The project team have termed such instructional actions high-uptake practices. The project will develop and field test PD materials to support algebra teachers at scale via these high-uptake practices.

In addition to developing the PD materials, the project team will research the efficacy of this PD model in terms of student learning outcomes and teacher instructional practices in approximately 60 algebra classrooms. The main data sources will include teacher observation data, teacher interviews and surveys, student pre/posttests, student surveys, and PD analytics. The research will characterize the immediate and longer term impacts of the PD on teachers’ instructional practices; and characterize the impact of teachers’ participation in the PD on students’ learning outcomes and engagement. The research questions include: 1) In what ways does teachers’ participation in the PD impact their instructional practices? 2) Do students of teachers who participate in the PD demonstrate differential growth in learning outcomes? 3) Do students of teachers who participate in the PD have increased rates of homework completion?; and 4) Do students of teachers who participate in the PD have increased engagement during individual work time? In meeting both our PD development and research aims, this project will contribute knowledge about the effectiveness of an incremental, practice-driven approach to PD and instructional change.

CAREER: Partnering with Teachers and Students to Engage in Mathematical Inquiry about Relevant Social Issues

This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans.

Lead Organization(s): 
Award Number: 
2042975
Funding Period: 
Sat, 05/01/2021 to Thu, 04/30/2026
Full Description: 

Despite efforts to address racial, gender, income-level and other kinds of inequities, disparities persist throughout society in educational, occupational, financial, and healthcare services and opportunities. To work toward societal equity, mathematics teachers have shown increased interest in both improving students’ achievement and supporting students’ ability to use mathematics to analyze these inequities to create change. For instance, a mathematics task may use rate, ratio, and proportion to explore the gender wage gap, and then use functions to explore disparities in earnings over time. Few resources, such as textbooks, coaching protocols, or video examples of classroom teaching, however, exist to support mathematics teachers’ efforts to teach the mathematics content while investigating relevant social issues. In addition, research indicates several dilemmas teachers face in maintaining the cognitive demand of the task, addressing state standards, and improving student agency through such investigations. Research is needed to understand how teachers learn to adapt and implement mathematics tasks that facilitate students’ mathematics learning and investigation of social issues. This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans. This project investigates: 1) how mathematics teachers learn to teach the mathematics content through investigation of relevant social issues, 2) how teachers negotiate classroom dilemmas related to this approach, and 3) how students feel about mathematics and their ability to enact change toward an equitable society. The professional development will be co-designed with mathematics teacher leaders from the school and the research team and will last three years. Teachers will invite students to become advisory board members to center students’ voices and solicit feedback about the relevance of the social issues embedded in the tasks. Classroom videos will be captured to share on a project website for use by mathematics teacher educators and professional development providers. The website will also host mathematics tasks designed through this project for teachers’ use in their own classrooms.

This qualitative, participatory design study partners with the mathematics department to investigate the following research questions: (1) How do teachers learn to adapt mathematics tasks to make them cognitively demanding and socially relevant for their students? How do contextual factors (e.g., specific school context/location/history, student backgrounds, teacher backgrounds, such as race and class) influence teacher learning? (2) What dilemmas become salient and how do teachers negotiate them while implementing the tasks? (3) How do these tasks improve students’ attitudes about mathematics and feelings of empowerment?  In the first year, the research team and two mathematics teacher leaders from the school will co-design the professional development experience focused on designing and implementing mathematics tasks grounded in issues that are socially relevant to students. In years 2-4, the mathematics department will engage in this professional development, with continual input from teacher participants. Participants will create student advisory boards who will offer feedback to teachers about the relevance of the mathematics tasks. Participants will video tape their own classrooms to share brief vignettes (5-8 minutes long) that highlight dilemmas and/or successes for video club sessions as part of the professional development series. Video club sessions offer opportunities to discuss challenges and successes with colleagues and offer peer support. These video clips will also become video case studies, along with the mathematics task and teacher reflections, for use by mathematics teacher educators and professional development providers through a project website. In addition, years 3-4 the project team will develop four detailed classroom case studies, accompanied with coaching support from the research team. To answer research questions 1 and 2 regarding teacher learning and dilemmas, teachers’ perspectives will be captured through professional development artifacts, coaching debriefs, teachers’ written reflections, and one-on-one semi structured interviews. To answer research question 3 regarding student agency and attitudes about mathematics, student sentiments will be explored through student work, open-ended surveys, and focus group interviews with eight focal students per classroom case study. A project website will share mathematics tasks and video cases with the broader community of mathematics educators. Through distribution of such materials, the project aims to offer much-needed resources and supports for mathematics teachers to use cognitively demanding and socially relevant mathematics tasks with their students. The project will also publish peer-reviewed research articles to share findings with the field.

Pages

Subscribe to Professional Development