Educational Technology

Supporting High School Students and Teachers with a Digital, Localizable, Climate Education Experience

This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.

Lead Organization(s): 
Award Number: 
2100808
Funding Period: 
Thu, 07/01/2021 to Mon, 06/30/2025
Full Description: 

Teachers regularly adapt curriculum materials to localize for their school or community context, yet curriculum materials are not always created to support this localization. Developing materials that are intentionally designed for localization has potential to support rich science learning across different contexts, especially for a topic like climate change where global change can have varied local effects. This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. It will develop and test a design process bringing together national designers and teachers across the country. Teachers will be supported through professional learning to adapt from the base unit to create a local learning experience for their students. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions. The unit will be fully digital with rich visual experiences, simulations, and computer models that incorporate real-time data and the addition of localized data sets. These data-based learning experiences will support students in reasoning with data to ask and answer questions about phenomena. Research will study the unit development and localization process, the supports appropriate for teachers and students, and the impact on classroom practice.

The project will adopt an iterative design process to create a Storyline base unit, aligned to Next Generation Science Standards, for localization, piloting, and an implementation study with 40 teachers. To support teacher learning, the project adopts the STeLLA teacher professional learning model. To support student learning, the project addresses climate change content knowledge with a focus on socioscientific issues and students’ sense of agency with environmental science. The project will research how the educative features in the unit and the professional development impact teachers’ practice, including their content knowledge, comfort for teaching a socioscientific issue, and their ability to productively localize materials from a base unit. The study uses a cohort-control quasi-experimental design to examine the impact of the unit and professional learning experience on dimensions of students' sense of agency with environmental science. The study will also include exploratory analyses to examine whether all students benefit from the unit. It uses a pre-post design to examine impacts on teacher knowledge and practice.

Fostering Computational Thinking through Neural Engineering Activities in High School Biology Classes

This project will develop and study a curriculum and app that support computational thinking (CT) in a high school biology unit. The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply CT principles.

Lead Organization(s): 
Award Number: 
2101615
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Computational thinking (CT) is a set of processes to identify and solve problems using algorithms or steps, and can be applied not only in computer science but in other disciplines. This project will develop and study a curriculum and app that support CT in a high school biology unit. Through a month-long neural engineering unit, approximately 500 students in 18 classes will measure their own muscle and brain activity with a low-cost, portable, wearable technology. Students will then analyze the data and design a brain-computer interface to turn neural signals into real-world output (e.g., a mechanical claw controlled by brain activity). The curriculum will be supported by: (1) a web-based instructional application that will guide students through the neural engineering design process; (2) neuroscience and engineering PhD students and postdocs acting as STEM mentors; and (3) a professional development program for teachers and mentors. The goal is to increase the students’ knowledge and interest regarding neurobiology, engineering, and computational thinking. This can contribute to their long-term capacity to pursue STEM careers. By integrating CT education into high school science, this expands the accessibility of the engineering and computing experiences beyond other efforts that focus primarily on programming and computer science courses.

The project will engage students in rich data practices by gathering, manipulating, analyzing, simulating, and visualizing data of bioelectrical signals from neural sensors, and in so doing give the students opportunities to apply computational thinking principles. The project will produce curriculum materials for the neural sensors and associated data practices. It will develop an app to help students design and construct a brain-computer interface, including computational elements like coding blocks, sensor and data simulation, and connecting to external devices. The five proposed research questions of the study are: How does students’ CT change throughout their participation in the neural engineering design process? What is the cross-cultural validity of two CT scales in a sample of high school students in the US? How does the process of collecting and analyzing real-world data relate to students’ experience of he engineering design process? How do students’ attitudes toward STEM change over the course of their participation in a neural engineering design process? How does teachers’ self-efficacy for fostering CT in their students via engineering design change through their participation in professional development and in implementation of the proposed curriculum?

Online Practice Suite: Practice Spaces, Simulations and Virtual Reality Environments for Preservice Teachers to Learn to Facilitate Argumentation Discussions in Math and Science

This project will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science.

Lead Organization(s): 
Award Number: 
2037983
Funding Period: 
Sat, 08/15/2020 to Mon, 07/31/2023
Full Description: 

In teacher education it is widely acknowledged that learning to teach requires that preservice teachers have robust, authentic, and consistent opportunities to engage in the work of teaching—ideally across different contexts, with diverse student populations, and for varied purposes—as they hone their instructional practice. Practice teaching experiences in K-12 classrooms, such as field placements and student teaching, are the most widely used approaches to provide these opportunities. In an ideal world these experiences are opportunities for preservice teachers to observe and work closely with mentor teachers and try out new instructional strategies with individual, small groups, and whole classes of K-12 students. While these experiences are critical to supporting preservice teachers' learning, it can be difficult to help preservice teachers transition from university classrooms to field placements in ways that provide them with opportunities to enact ambitious instructional strategies. This need is particularly acute in mathematics and science education, where classrooms that model strong disciplinary discourse and argumentation are not always prevalent. This challenge is amplified by the COVID-19 pandemic environment; with schools and universities across the nation operating online, many preservice teachers will miss out on opportunities to practice teaching both within their courses and in K-12 classrooms. To address this urgent challenge in STEM education, project researchers will develop, pilot, and refine a set of coordinated and complementary activities that teacher education programs can use in both online and face-to-face settings to provide practice-based opportunities for preservice teachers to develop their ability to facilitate argumentation-focused discussions in mathematics and science, a critical teaching practice in these content areas. The practice-based activities include: (1) interactive, online digital games that create targeted practice spaces to engage preservice teachers to respond to students' content-focused ideas and interactions; (2) facilitating group discussions with upper elementary or middle school student avatars in a simulated classroom using performance-based tasks; and (3) an immersive virtual reality whole-classroom environment that allows for verbal, textual and non-verbal interactions between a teacher avatar and 24 student avatars. The online practice suite, made up of these activities along with supports to help teacher educators use them effectively, represents not just an immediate remedy to the challenge of COVID-19, but a rich and flexible set of resources with the potential to support and improve teacher preparation well beyond the COVID-19 challenge.

This study will use design-based research to create this integrated system of practice teaching opportunities. This approach will involve developing and refining the individual practice activities, the integrated online practice suite, and the teacher educator support materials by working with a teacher educator community of practice and engaging up to 20 teacher educators and 400 preservice teachers in multiple rounds of tryouts and piloting during the three-year project. The project will proceed in three phases: a first phase of small-scale testing, a second phase trying the materials with teacher educators affiliated with the project team, and a third phase piloting materials with a broader group of mathematics and science teacher educators. Data sources include surveys of preservice teachers' background characteristics, perceptions of the practice activities, beliefs about content instruction, perceptions about preparedness to teach, and understanding of argumentation and discussion, videos and/or log files of their performances for each practice teaching activity, and scores on their practice teaching performances. The project team will also observe the in-class instructional activities prior to and after the use of each practice teaching activity, conduct interviews with teacher educators, and collect instructional logs from the teacher educators and instructional artifacts used to support preservice teachers' learning. Data analysis will include pre and post comparisons to examine evidence of growth in preservice math and science teachers' beliefs, perceptions, understanding, and teaching performance. The project team will also build a series of analytic memos to describe how each teacher educator used the online practice suite within the mathematics or science methods course and the factors and decisions that went into that each use case. Then, they will describe and understand how the various uses and adaptations may be linked to contextual factors within these diverse settings. Findings will be used to produce empirically and theoretically grounded design principles and heuristics for these types of practice-based activities to support teacher learning.

SimSnap: Orchestrating Collaborative Learning in Biology through Reconfigurable Simulations (Collective Research: Puntambekar)

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

Award Number: 
2010357
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands. Working within a digital plant habitat simulation, students will investigate how different environmental and genetic factors affect the health of a variety of plants and vegetables. As students engage in design tasks, they will be able to seamlessly move between individual and collaborative work with peers by "snapping" their tablets together (by placing them next to each other) to create a single shared simulation that spans all their devices. Students will be able to drop elements of their individual inquiry activities (e.g., plant types, soil compositions) into their shared simulation, providing opportunities for collaborative discussion and knowledge integration. When students "unsnap" their tablets, their collaborative work will stay with them in a digital journal, for individual reflection or as a resource for future collaborative activities (with potentially new group members). Project curriculum units will help students see the connections between the science concepts and principles they are learning, as they iteratively work on their designs through a combination of individual, collaborative and whole class learning. This work will also develop new approaches that help teachers understand the state of the class when students are taking part open-ended biology investigations, and support the teacher classroom orchestration and facilitation. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website.

The project will research collaborative learning along three planesindividual, small group and whole classwith technologies and classroom teachers supporting learning in innovative ways. Research has shown that technology can support collaborative learning, but there is limited research on how it can support transitions between individual and collaborative learning. While research has also shown that collaborative or individual learning may be more beneficial depending on the task or learning goal, there are relatively few studies that examine the potential for learning when students move between these social planes. Further, as these configurations become increasingly complex, there is also the challenge of how to support teachers' orchestration and facilitation. Studies will focus around four main research questions: 1) How does engaging in personally relevant biology curriculum through user-driven investigations help students understand the underlying science content? 2) How are students using and sharing the work of others to develop their own understanding about the underlying science concepts? 3) How do designs that allow for the movement between individual, small group, and whole class configurations allow students to work as a learning community? 4) How does the technology platform support teachers in orchestrating and facilitating classroom activities? Project studies will follow a design-based research methodology, guided by the premise that learning in naturalistic settings is the product of multiple interacting variables that cannot be reduced to a small set of controlled factors. The research will be broken down across four main developmental arcs: Technology design and iteration; Facilitation, user testing, and co-design; Classroom implementation; and Research and analysis. Each of the designed technologies will be user tested in the lab prior to being deployed in the classroom. Part of the analysis will focus on how the different technologies (i.e., individual and connected tablets, the teacher orchestration tablet) support learning and collaboration in naturalistic settings. The project research framework provides a way to examine the usability, usefulness and impact of interactions in a multi-user collaborative context using a mixed-method approach with various quantitative measures and qualitative indicators. Teachers will be prepared to use the system through 2-week summer institutes, during which they will also participate in co-design of the curriculum and the technology. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website, as well as being disseminated to appropriate audiences via conference presentations and publications.

SimSnap: Orchestrating Collaborative Learning in Biology through Reconfigurable Simulations (Collective Research: Tissenbaum)

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

Award Number: 
2010456
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands. Working within a digital plant habitat simulation, students will investigate how different environmental and genetic factors affect the health of a variety of plants and vegetables. As students engage in design tasks, they will be able to seamlessly move between individual and collaborative work with peers by "snapping" their tablets together (by placing them next to each other) to create a single shared simulation that spans all their devices. Students will be able to drop elements of their individual inquiry activities (e.g., plant types, soil compositions) into their shared simulation, providing opportunities for collaborative discussion and knowledge integration. When students "unsnap" their tablets, their collaborative work will stay with them in a digital journal, for individual reflection or as a resource for future collaborative activities (with potentially new group members). Project curriculum units will help students see the connections between the science concepts and principles they are learning, as they iteratively work on their designs through a combination of individual, collaborative and whole class learning. This work will also develop new approaches that help teachers understand the state of the class when students are taking part open-ended biology investigations, and support the teacher classroom orchestration and facilitation. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website.

The project will research collaborative learning along three planesindividual, small group and whole classwith technologies and classroom teachers supporting learning in innovative ways. Research has shown that technology can support collaborative learning, but there is limited research on how it can support transitions between individual and collaborative learning. While research has also shown that collaborative or individual learning may be more beneficial depending on the task or learning goal, there are relatively few studies that examine the potential for learning when students move between these social planes. Further, as these configurations become increasingly complex, there is also the challenge of how to support teachers' orchestration and facilitation. Studies will focus around four main research questions: 1) How does engaging in personally relevant biology curriculum through user-driven investigations help students understand the underlying science content? 2) How are students using and sharing the work of others to develop their own understanding about the underlying science concepts? 3) How do designs that allow for the movement between individual, small group, and whole class configurations allow students to work as a learning community? 4) How does the technology platform support teachers in orchestrating and facilitating classroom activities? Project studies will follow a design-based research methodology, guided by the premise that learning in naturalistic settings is the product of multiple interacting variables that cannot be reduced to a small set of controlled factors. The research will be broken down across four main developmental arcs: Technology design and iteration; Facilitation, user testing, and co-design; Classroom implementation; and Research and analysis. Each of the designed technologies will be user tested in the lab prior to being deployed in the classroom. Part of the analysis will focus on how the different technologies (i.e., individual and connected tablets, the teacher orchestration tablet) support learning and collaboration in naturalistic settings. The project research framework provides a way to examine the usability, usefulness and impact of interactions in a multi-user collaborative context using a mixed-method approach with various quantitative measures and qualitative indicators. Teachers will be prepared to use the system through 2-week summer institutes, during which they will also participate in co-design of the curriculum and the technology. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website, as well as being disseminated to appropriate audiences via conference presentations and publications.

Enhancing the Teacher-Curriculum Relationship in Problem-based Mathematics Classrooms by Connecting Teacher and Student Digital Collaborative Environments

The project will create a digital environment for middle school mathematics teachers that is combined with a student collaborative platform for a problem-solving curriculum. The goal is to design and develop the digital collaborative platform so networks of teachers can create, use, and share teaching resources for planning, enactment, and reflection on student thinking.

Lead Organization(s): 
Award Number: 
2007842
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will create a digital environment for middle school mathematics teachers to promote collaboration. The digital environment for the teachers links to a student collaborative environment and contains the same problem-based curriculum materials. The environment helps teachers to collaborate and learn from one another. This occurs when teachers plan, teach, and reflect on student learning. The online, digital platform will help teachers work together more easily in networks that might be at different schools. The resources online will include problem-based curriculum materials, classroom artifacts from students, and resources created by teachers. The project will learn about how teachers use resources, collaborate in the digital environment, and support each other through the network. With more curriculum resources being created for online teaching and learning, the project will help understand how mathematics teaching and learning can be best supported.

The design-based research project in mathematics studies a digital, collaborative environment for teachers that is combined with a student collaborative platform for a middle school problem-solving curriculum. The goal is to design and develop the digital collaborative platform so networks of teachers can create, use, and share teaching resources for planning, enactment, and reflection on student thinking. The project will include middle school teachers in the design process. The environment for students enables student thinking to be visible to other students and the teacher. This allows the teacher to archive and then examine student reasoning and thinking. The new environment will allow that work to be shared with other teachers in a professional learning community. The research question is: How do teachers in networks access, generate, use, and share teaching resources (including classroom artifacts) as needed to support mathematics teaching (planning, enactment, and reflection of student thinking)? The project will use teacher interviews and artifacts from the collaborative environment for mixed methods data collection and analysis. Teacher reflection resources will be used to understand how they are thinking about students' mathematical work and how they are using the platform resources.

Incorporating Professional Science Writing into High School STEM Research Projects

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

Lead Organization(s): 
Award Number: 
2010333
Funding Period: 
Wed, 07/15/2020 to Fri, 06/30/2023
Project Evaluator: 
Maya Patel
Full Description: 

This exploratory project addresses important challenge of incorporating disciplinary literacy practices in scientific inquiry projects of high school students. The project will incorporate the peer-review process and publication in the Journal of Emerging Investigators (JEI). The Next Generation Science Standards emphasize constructs from disciplinary literacy such as engaging in argument from evidence, and evaluating and communicating information. However, there are few resources available to students and teachers that integrate these constructs in authentic forms that reflect the practices of professional scientists. High school student learners engage in scientific inquiry, but rarely participate in authentic forms of communication, forms that are reflective of how scientists communicate and participate in the primary literature of their fields. The project has three aims: 1) Generate knowledge of the impact of peer-review and publication on perceptions and skills of scientific inquiry and STEM identity, 2) Generate knowledge of how participation in peer-review and publication are impacted by contextual factors (differences in mentors and research contexts), and 3) Develop JEI field-guides across a range of contexts in which students conduct their research.

The goal of the project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry. The project will investigate how participation in peer-reviewed publications will have an impact on student learning by administering a set of pre- and post-surveys to students who submit a paper to JEI. The project will expand student participation in JEI via outreach to teachers in under-resourced and remote areas by delivering virtual and in-person workshops which will serve to demystify peer review and publication, and explore ways to integrate these processes into existing inquiry projects. Other efforts will focus on understanding how student contextual experiences can impact their learning of scientific inquiry. These student experiences include the location of the project (school, home, university lab), the type of mentor they have, and how they became motivated to pursue publication of their research. The project will recruit students from under-resourced schools in New York through a collaboration with MathForAmerica and from rural areas through outreach with STEM coordinators in the Midwest. The resources created will be disseminated directly on the JEI website.

Assessing College-Ready Computational Thinking (Collaborative Research: Wilson)

The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

Award Number: 
2010314
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

Because of the growing need for students to be college and career ready, high-quality assessments of college readiness skills are in high demand. To realize the goal of preparing students for college and careers, assessments must measure important competencies and provide rapid feedback to teachers. It is necessary to go beyond the limits of multiple-choice testing and foster the skills and thinking that lie at the core of college and career ready skills, such as computational thinking. Computational thinking is a set of valuable skills that can be used to solve problems, design systems, and understand human behavior, and is thus essential to developing a more STEM-literate public. Computational thinking is increasingly seen as a fundamental analytical skill that everyone, not just computer scientists, can use. The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

The project will address a set of research questions focused on 1) clarifying computational thinking constructs, 2) usability, reliability of validity of assessment items and the information they provide, 3) teachers' use of assessments, and 4) relationships to student performance. The study sample of 2,700 used for the pilot and field tests will include all levels of students in 10th through 12th grade and first year college students (both community college and university level). The target population is students in schools which are implementing the College Readiness Program (CRP) of the National Mathematics and Science Institute. In the 2020-21 academic year 54 high schools across 11 states (CA, GA, FL, ID, LA, NC, NM, OH, TX, VA, and WA) will participate. This will include high school students in Advanced Placement classes as well as non-Advanced Placement classes.  The team will use the BEAR Assessment System to develop and refine assessment materials. This system is an integrated approach to developing assessments that seeks to provide meaningful interpretations of student work relative to cognitive and developmental goals. The researchers will gather empirical evidence to develop and improve the assessment materials, and then gather reliability and validity evidence to support their use. In total, item response data will be collected from several thousand students. Student response data will be analyzed using multidimensional item response theory models.

Geological Construction of Rock Arrangements from Tectonics: Systems Modeling Across Scales

This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.

Lead Organization(s): 
Award Number: 
2006144
Funding Period: 
Thu, 10/01/2020 to Mon, 09/30/2024
Full Description: 

Plate tectonics is the fundamental theory of geology that underlies almost all geological processes, including land and rock formation. However, the geologic processes and immense timeframes involved are often misunderstood. This study will create two curriculum units that use sophisticated simulations designed for students in secondary schools. The simulations will integrate the study of the tectonic system and the rock genesis system. Data from the simulations would be students' sources of evidence. For instance, the Tectonic Rock Explorer would use a sophisticated modeling engine that uses the physics involved in geodynamic data to represent compressional and tensional forces and calculate pressure and temperature in rock forming environments. This project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic. In addition, this study would include work on students with disabilities in earth science classrooms and explore the practices that seem to be particularly useful in helping understand these systems. By working with simulations, the researchers intend to engage students in scientific practices that are more authentic to the ways that geologists work. The researchers will study if and how these simulations and the computer-based tools allow students to observe and manipulate processes that would be may otherwise be inaccessible.

This work follows on from prior work done by the Concord Consortium on simulations of earth systems. The design and development progression in Years 1 and 2 would create two units. The first module focuses on the relationship between tectonic movement and rock formation. The second would investigate geochronology and dating of rock formations. The researchers would work with 3 teachers (and classes), and then 15 teachers (and classes) using automated data logs, class observations, and video of students working in groups in Years 1 and 2. Professional development for teachers would be followed by the creation of educative materials. Researchers will also develop the framework for an assessment tool that includes understanding of geologic terms and embedded assessments. The researchers will used a mixed methods approach to analyze student data, including analyses cycles of analysis of students pre- and post-test scores on targeted concepts, reports of student performances on tasks embedded in the simulations, and the coding of videos to analyze discourse between partners and the supports provided by teachers. Teacher data will be analyzed using interviews, surveys and journals, with some special focus on how they are seeing students with identified disabilities respond to the materials and simulations. The research team intends to make materials widely available to thousands of students through their networks and webpages, and pursue outreach and dissemination in scholarly and practitioner conferences and publications.

Reaching Across the Hallway: An Interdisciplinary Approach to Teaching Computer Science in Rural Schools

This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.

Lead Organization(s): 
Award Number: 
2010256
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Strengthening computer science (CS) and computational thinking (CT) education is a national priority with particular attention to increasing the number of teachers prepared to deliver computer science courses. For rural schools, that collectively serve more than 10 million students, it is especially challenging. Rural schools find it difficult to recruit and retain STEM teachers that are prepared to teach computer science and computational thinking. This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project will build teachers' self-efficacy to deliver computer science concepts and practices into middle school social studies classrooms. The project is led by CodeVA (a statewide non-profit in Virginia), in partnership with TERC (a STEM-focused national research institution) and the University of South Florida College of Education, and in collaboration with six rural school districts in Virginia. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science. The professional development model will be designed and developed around meeting rural teachers, where they are, geographically, economically, and culturally. The model will also be sustainable and will work within the resource constraints of the rural school district. The model will also be built on strategies that will broadly spread CS education while building rural capacity.

The project will use a mixed-methods research approach to understand the model's potential to build capacity for teaching CS in rural schools. The research design is broken down into four distinct phases; planning/development prototyping, piloting and initial dissemination, an efficacy study, and analysis, and dissemination. The project will recruit 45 teacher-leaders and one district-level instructional coach, 6th and 7th-grade teachers, and serve over 1900 6th and 7th-grade students. Participants will be recruited from the rural Virginia school districts of Buchanan, Russell, Charlotte, Halifax, and Northampton. The research question for phase 1 is what is each district's existing practice around computer science education (if any) and social studies education? Phases 2, 3 and 4 research will examine the effectiveness of professional development on teacher leadership and the CS curricular integration. Phase 4 research will examine teacher efficacy to implement the professional development independently, enabling district teachers to integrate CS into their social studies classes. Teacher data sources for each phase include interviews with administrators and teachers, teacher readiness surveys, observations, an examination of artifacts, and CS/CT content interviews. Student data will consist of classroom observation and student attitude surveys. Quantitative and qualitative data will be triangulated to address each set of research questions and provide a reliability check on findings. Qualitative data, such as observations/video, and interview data will be analyzed through codes that represent expected themes and patterns related to teachers' and coaches' experiences. Project results will be communicated through presentations at conferences such as Special Interest Group on Computer Science Education, the Computer Science Teachers Association (CSTA), the National Council for Social Studies (NCSS), and the American Educational Research Association. Lesson plans will be made available on the project website, and links will be provided through publications and newsletters such as the NCSS Middle-Level Learner, NCSS Social Education, CSTA the Voice, the NSF-funded CADREK12 website and the NSF-funded STEM Video Showcase.

Pages

Subscribe to Educational Technology