
J Youth Adolescence
DOI 10.1007/s10964-016-0618-8

EMPIRICAL RESEARCH

Who Chooses STEM Careers? Using A Relative Cognitive
Strength and Interest Model to Predict Careers in Science,
Technology, Engineering, and Mathematics

Ming-Te Wang1 ● Feifei Ye1 ● Jessica Lauren Degol2

Received: 2 August 2016 / Accepted: 19 November 2016
© Springer Science+Business Media New York 2016

Abstract Career aspirations in science, technology,
engineering, and mathematics (STEM) are formulated in
adolescence, making the high school years a critical time
period for identifying the cognitive and motivational factors
that increase the likelihood of future STEM employment.
While past research has mainly focused on absolute cog-
nitive ability levels in math and verbal domains, the current
study tested whether relative cognitive strengths and inter-
ests in math, science, and verbal domains in high school
were more accurate predictors of STEM career decisions.
Data were drawn from a national longitudinal study in the
United States (N= 1762; 48 % female; the first wave during
ninth grade and the last wave at age 33). Results revealed
that in the high-verbal/high-math/high-science ability
group, individuals with higher science task values and lower
orientation toward altruism were more likely to select
STEM occupations. In the low-verbal/moderate-math/
moderate-science ability group, individuals with higher
math ability and higher math task values were more likely
to select STEM occupations. The findings suggest that
youth with asymmetrical cognitive ability profiles are more
likely to select careers that utilize their cognitive strengths
rather than their weaknesses, while symmetrical cognitive
ability profiles may grant youth more flexibility in their

options, allowing their interests and values to guide their
career decisions.

Keywords STEM ● Individual differences ● Career
choices ● Relative cognitive strength ● Relative interest

Introduction

The continued shortage of science, technology, engineering,
and mathematics (STEM) professionals in the United States
has led to an expansion of research examining how best to
increase the STEM workforce (Atkinson et al. 2007). Since
career aspirations are formulated in adolescence and shape
subsequent pathways to STEM (Eccles 2009), it is critical to
identify cognitive and motivational mechanisms, during the
high school years, that predict future employment. In this
study, we tested a novel model in which relative strengths
of cognitive ability and interest in high school accounted for
individual differences in career selection. That is, we
hypothesize that relative strengths in math, science, and
verbal ability, and relative interests or values in math and
science will predict STEM employment more accurately
than absolute cognitive ability alone, which has been the
predominant focus of prior research. A relative cognitive
strength profile may offer clearer insight into an adoles-
cent’s career decision-making process, by emphasizing that
the motivational drive behind a decision to pursue a specific
career may be influenced by the adolescent’s unique ability
profile. Adolescents with asymmetrical or unbalanced cog-
nitive aptitude profiles may be more likely to choose
pathways that optimize their cognitive strengths and mini-
mize their weaknesses. However, adolescents with sym-
metrical or balanced high cognitive ability across multiple
domains may have access to a greater variety of
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occupations, thereby generating an increased likelihood for
domain-specific interests to drive their career decisions.
Therefore, the relative strengths and interests model may
better discern the complex cognitive and psychosocial
processes that steer youth either toward or away from a
career in STEM.

The relative cognitive strengths and interests model aligns
with current conceptualizations of career development in the
United States, which is largely shaped by modern day
principles governing personal choice or autonomy in
selecting a career (Sikora and Pokropek 2012). However, our
model does not imply that career choices are not constrained
by various sociocultural or societal forces that operate out-
side the boundaries of an individual’s control. Equal oppor-
tunity to pursue STEM is not available to all youth
throughout the United States, resulting in forces or circum-
stances beyond an individual’s control that will affect career
choice. Living in poverty or attending a lower quality school,
for example, will undoubtedly impact adolescents’ achieve-
ment, their level of academic competence and interest, and
the extent that they value education (Gregory and Weinstein
2004; Ma and Wilkins 2002; Wang and Degol 2013; Wang
et al. 2015). Experiences and interactions within these con-
texts will accumulate over time to inform the development of
cognitive ability and motivational beliefs (e.g., interest,
value, ability self-concept), which in turn influence career
decisions. As such, although cognitive ability and motiva-
tional beliefs are important predictors of career choices,
ability and motivational beliefs are also influenced and
shaped by broader sociocultural contexts (e.g., gender and
racial stereotypes and discrimination, school quality, pov-
erty, access to resources; Wang and Degol 2013, 2016).

While we acknowledge that for many individuals
environmental and sociocultural forces will set parameters
or barriers surrounding their vocational choices, in the
present study, our model focuses on the cognitive and
motivational factors that predict career decisions. Unlike
sociocultural factors, cognitive and motivational factors are
more amenable to change, particularly across shorter peri-
ods of time (e.g., Wang and Degol 2016). By stressing these
malleable factors in our model, we may sharpen the focus of
the study onto potential targets of intervention for future
research. Examining the complex interplay between moti-
vation and cognition using a person-centered framework,
therefore, stresses not only the importance of improving
these processes but tailoring intervention strategies to meet
unique individual needs.

Pathways to STEM Careers: A Relative Cognitive
Strength and Interest Model

Career pathways encompass both the cognitive ability to
pursue a career and the motivation to employ that ability

(Ceci and Williams 2010; Eccles 2009). Research has
shown that choosing a career involves a complex devel-
opmental process of evaluating cognitive ability and interest
across different domains to establish the “fit” of the field in
fulfilling personal goals (Wang et al. 2015). However, it is
unclear if the relative importance of ability vs. interest is
uniform across all students. Does one consistently take
precedence over the other, or does the relative importance
of interest vs. ability vary for different groups of students?
Recent research suggests that absolute cognitive ability
alone may not be sufficient in explaining individual dif-
ferences in career selection (Kell et al. 2013; Park et al.
2007; Valla and Ceci 2014; Wang et al. 2013). Yet many
extant studies have neglected to account for the fact that
relative cognitive strengths across a number of subject areas
may not only inform STEM career decisions, but also
influence the pathways through which individuals gradually
prepare for STEM careers. For example, studies have found
that individuals with both high verbal and math ability were
more likely to choose non-STEM careers, while individuals
with higher math ability relative to verbal ability were more
likely to choose STEM careers (Wang et al. 2013). We can
speculate that, for individuals whose quantitative skills
exceed their verbal skills, their increased likelihood of
ending up in a STEM career may be partially driven by a
desire to capitalize on their quantitative strengths and
minimize their verbal weaknesses, thereby, effectively
narrowing career options. Their higher rates of STEM
employment, therefore, may be largely driven by their
higher math ability relative to their verbal ability. Con-
versely, heightened aptitude across a number of subject
areas may provide individuals with a greater variety of
career opportunities. As such, career options may
depend more on relative cognitive strengths across
multiple domains than absolute cognitive ability in a single
domain.

While high aptitude in math and science is an important
factor in determining STEM employment, high ability in
math or science may not necessarily result in the selection
of a STEM career. The motivational beliefs (e.g., ability
self-concept, interest, utility value, and attainment value)
that one attaches to a career in math or science also play
a key role (Chow et al. 2012; Maltese and Tai 2011).
Motivational researchers suggest that youth are more likely
to select tasks and pursue careers that they find interesting,
useful, and personally relevant, in addition to feeling
competent (Eccles 2009; Eccles et al. 1998). Indeed, studies
show that youth who perceive greater ability self-concept in
math and science are more likely to persist in STEM fields
(Parker et al. 2014; Wang and Degol 2013). Research also
supports that youth who are interested in and highly value
math or science are more likely to earn a degree in STEM
(Maltese and Tai 2011), and aspire to or actually pursue a
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STEM career (Wang 2012; Wang et al. 2015), even after
controlling for math and science abilities.

Additionally, another set of values encompassing occu-
pational interests, lifestyle values, and personality traits also
play a role in STEM career decisions. Due to perceived
incongruence between personal communal goals and STEM
fields, individuals who value helping people or people-
oriented careers are less likely to choose STEM careers,
which are often perceived to be more object-oriented and
less socially-oriented (Diekman et al. 2010, 2011). There-
fore, we can expect that individuals with higher communal
goals or altruistic interests would be less likely to pursue
STEM careers in general. Likewise, lifestyle values or
career preferences related to family and work balance also
possibly predict STEM career employment. Individuals
who value greater work hour flexibility and spending more
time with their family are less likely to choose STEM
careers because STEM fields are often viewed as less
accommodating to individuals who desire a family-centered
lifestyle (Mason and Goulden 2004; Williams and Ceci
2012). Taken together, while cognitive ability may set the
stage for successful pursuit of STEM careers, interest and
task value are likely to motivate youth to persist through
these STEM pathways.

Building upon this research, we hypothesize that interest
and value may precede cognitive aptitude for career deci-
sions, particularly for individuals with comparable strengths
in multiple domains. Individuals with symmetrical cogni-
tive profiles have multiple domains competing to form their
academic self-concept, leading to broader career options
(Valla and Ceci 2014). Therefore, the relative strength of
interest and value in each domain should be more likely to
determine career pathways for individuals with high abil-
ities across multiple subject areas. In this regard, in addition
to relative cognitive strength, the breadth of interest and
value across math and science domains could be another
important factor leading to individual differences in career
choices.

Math Interest vs. Science Interest

Although a nascent (but growing) body of work supports
the relative cognitive strength and interest model, it has not
yet been examined in relation to ability patterns that include
science. STEM includes both math and science domains,
and while math and science abilities and interests overlap,
they are not interchangeable. For example, while correla-
tions between math and science achievement scores tend to
be moderately high, correlations between math and science
expectancies and interests are low (Else-Quest et al. 2013;
Li et al. 2002). Despite this, studies have neglected to
examine the individual contributions of math and science
abilities and interests to STEM career choices. The present

study will address this limitation by examining how verbal
vs. math vs. science ability and math vs. science interest
determines STEM career employment.

As discussed earlier, for individuals with high ability
across all three subjects (math, science, and verbal), we
hypothesize that interest and value will be a major driving
force toward STEM career employment. However, current
research has provided little insight into the relative roles that
math and science interest play in motivating youth to pursue
STEM careers. Nonetheless, we posit that science interest
will trump math interest as a leading factor in pursuing
STEM for two possible reasons. The first involves the role
of mathematical ability as a subset of skills within the
broader domain of scientific ability. Math performs a gate-
keeping function for many young people who aspire to
enter STEM at a professional level, and therefore, provides
the foundation for many STEM careers (Li et al. 2002).
However, mathematics is essential to many careers and not
particularly limited to STEM, while science is a broader
domain that encompasses knowledge outside of mathema-
tical interests and aptitude. For youth with symmetrical
ability profiles, the role of math as a subset of skills within
the scientific field potentially removes math interest as a
leading factor in determining STEM career employment,
and instead favors broader scientific interests. For example,
youth with high aptitude across multiple domains may opt
into less math-intensive STEM employment to pursue a
variety of non-math related interests, such as working with
animals (e.g., marine biology) or a desire to help others
through medicine (e.g., biomedical research) (Valla and
Ceci 2014).

A second explanation for the relative importance of
science interest over math interest in selecting STEM
careers could be the manner in which these subjects are
presented within educational contexts. Mathematics is more
theoretical and abstract than science in the way it is taught,
potentially coming at odds with youth who may be more
interested in pursuing careers that afford greater creativity,
real-world problem-solving skills, and applied field work
(Miller and Solberg, 2012). Science often involves more
hands-on experiences and creative exploration than mathe-
matics, which may make it appealing to youth with more
applied investigative career interests (Maltese and Tai
2011). At this juncture, science interests may trump math
interests as more reliable predictors of STEM career
employment. While individuals with very high interest in
math may be more likely than those with low interest to
funnel into STEM careers, the breadth of applied career
options associated with STEM implies that math interest
alone should not be sufficient to explain the process through
which high-aptitude individuals select STEM. For youth
with symmetrical cognitive profiles, STEM employment is
probably better reflected, overall, by science interests.
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STEM Choices in Home Context

Individual differences in cognitive capacity, competence
beliefs, and interest are also shaped by experiences in
broader sociocultural contexts, such as home settings in
particular (Eccles 2009). Experiences and interactions in
these contexts illuminate individuals’ personal values, goals,
social identities, competence, and connections to others.
The aggregation of these experiences influences cognitive
ability and motivation, which in turn informs career choices.
Indeed, research has demonstrated the important role of
parent expectation and encouragement in academic pursuits
(Simpkins et al. 2012; Wang et al. 2015). In complex path
models, parental encouragement to pursue STEM education
was revealed as a key developmental predictor that sets the
foundation toward a STEM career (Wang 2012). For
example, greater parental encouragement to study math and
science was related to advanced math course taking, greater
interest in math and science, and higher math and science
achievement, which subsequently predicted postsecondary
education plans and eventual STEM professional employ-
ment (Simpkins et al. 2012). Therefore, parental encour-
agement toward college as well as parental encouragement
toward math and science learning were included in the
study as contextual covariates for STEM choices.

High School Years as a Critical Period for Forming
Career Aspirations

The pathway to STEM is forged during the high school
years, with students indicating their intention to pursue a
STEM career as early as ninth grade (Maltese and Tai
2011). It is also during high school that math demands
increase dramatically, and students’ math and science per-
formance and interest start to show differential trajectories
(Wigfield Byrnes and Eccles 2006). Starting in high school,
youth are granted more options to enroll in courses that are
of interest to them, creating a divide in STEM knowledge
and learning experience between those who are interested
and enroll in more advanced courses, and those who are not
interested and opt out of challenging STEM courses. As
such, this study will target the high school years (particu-
larly ninth grade) with the understanding that the transition
to high school presents a potentially optimal point of
intervention for leveraging efforts to support the develop-
ment of STEM-related knowledge and skills, competence
beliefs, interest, and task values. While we acknowledge
that the path to STEM is a developmental one, in which
different sociocultural and psychological factors emerge to
strengthen or derail STEM intentions at different ages, the
main purpose of this study is to narrow down relevant
cognitive and motivational factors in ninth grade. For many
youth, this marks the beginning of their STEM trajectories,

in which achievement and interest in STEM are likely to be
solidified and to influence decisions down the road that
enhance the likelihood of STEM employment. As youth
advance through secondary and postsecondary school, these
pathways crystalize. It is especially challenging to initiate a
STEM trajectory after enrolling in postsecondary education,
due to the very constrained and prescribed curricula in
many STEM professional fields. In other words, the start of
high school is an optimal time period for examining how
career aspirations—based on individual competencies,
interests, and perceived compatibility of competencies and
interests—shape the academic pathways that lead to the
STEM pipeline.

The Current Study

In this study, we adopt a holistic view of how individual
differences in cognitive aptitude and interest develop and
interact across multiple domains to shape STEM career
employment. Specifically, we first identify how different
cognitive abilities combine into distinct profiles among
ninth graders and then examine whether cognitive and
motivational predictors of employment vary by cognitive
ability profiles. Our study builds upon past research in
several ways. First, most studies used variable-centered
procedures to examine the role in which absolute levels of
ability and interest predict STEM employment. In contrast,
we use a person-centered approach to examine hetero-
geneity in ability patterns across math, science, and verbal
domains. Rather than focusing on individual differences
across a range of values on one variable (e.g., how indivi-
duals with high math ability differ from individuals with
low math ability), person-centered approaches classify
individuals into distinct groups based on patterns that
emerge across a constellation of variables (e.g., how indi-
viduals with both high math and high verbal ability differ
from individuals with high math ability and low verbal
ability) (Hayenga and Corpus 2010). With person-centered
approaches, therefore, we are able to discern whether
pathways to a STEM career vary across different ability
profiles (Bergman 2001).

Secondly, studies utilizing person-centered approaches
have relied mainly on cognitive ability profiles of math and
verbal ability to predict STEM employment (Park et al.
2007; Riegle-Crumb et al. 2012; Wang et al. 2013). How-
ever, rather than focus solely on math and verbal compar-
isons, we incorporate science ability in our cognitive
profiles, examining how verbal vs. math vs. science ability
and interest contribute to STEM employment. Although
most studies tend to view math and science as highly
similar, often interchangeable domains, differentiating math
from science can increase our understanding of how these
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skills covary and whether one takes precedence over the
other as a stronger predictor of STEM employment. Finally,
we use a large national sample to target cognitive and
motivational processes in high school: a critical develop-
mental period for shaping career aspirations through
heightened exploration of course interests, which become
less flexible and more prescribed as students enter post-
secondary school. This focus will allow us to better
understand early precursors to STEM careers.

Based on the theoretical framework of the relative cog-
nitive strengths and interests model, we expect that indivi-
duals with high ability across multiple domains will be
guided toward STEM careers by their science interests and
values, rather than their math interests, values, and ability.
Given the breadth of their abilities, the multitude of job
opportunities available to these youth grants them more
freedom to allow their interests and values to drive their
decisions. For individuals with lower verbal ability and
moderate math and science abilities, we hypothesize that
math ability and interest will be a major driving force
toward STEM employment. For this group, having a less
well-rounded skill set may encourage a career that simul-
taneously minimizes their weaknesses and capitalizes on
their strengths. Accordingly, we anticipate individuals from
this group will pursue STEM careers based on their rela-
tively higher math ability.

Method

Participants

Data was taken from the Longitudinal Study of American
Youth, a large-scale ongoing national study initiated in
1987 in the United States, focusing on student, family, and
school characteristics that influence student achievement,
interest, and occupational proclivities toward math and
science. The base sample consisted of two cohorts of
seventh graders and tenth graders recruited from different
high schools and accompanying middle schools. The cur-
rent study utilized two waves of survey data from the
younger cohort, when the participants were in ninth grade
and when they were approximately 33 years of age. Of the
2725 students, 1762 (65 % response rate) participated in
two waves of data collection. Students were 48 % female,
75 % European American, 11 % African American, 9 %
Hispanic, and 3 % Asian. The sample came from 50 public
school systems across the country. Schools were classified
as urban (25 %), suburban (42 %), and rural (33 %).
Selected schools are considered representative of secondary
schools across the country.

To determine whether the students who participated in
ninth grade differed from those who dropped out at the age

of 33, a series of independent samples contingency table
analyses and t-tests were conducted with all independent,
outcome, and demographic variables at ninth grade. Results
suggested that those who participated in the study for two
waves across approximately 20 years were different from
those who dropped out after the first wave on gender, race,
SES, and some of the achievement motivation variables (see
Table 1). We used full information maximum likelihood
estimation (FIML) in Mplus 7.2 to include cases with
missing data, which fits the covariance structure model
directly to the available raw data for each participant
(Allison 2012).

Measures

STEM occupation

In 2007, participants supplied information on their current
careers or occupations. We operationalized these careers
into two categories: (a) non-STEM, consisting of careers in
the arts, literature, business, education, and the social sci-
ences and (b) STEM, consisting of careers in mathematics,
engineering, computer science, life science, medical sci-
ence, and physical science.

Motivational and psychological beliefs

Student motivational beliefs that were shown to be closely
related to career choices were collected from student self-
report survey in the fall of ninth grade and included mea-
sures of: (a) ability self-concept in math and science, (b)
task values in math and science, (c) altruistic values, (d)
family values, and (e) monetary values.

Ability self-concept Youth reported on their math and
science ability self-concepts (Bleeker and Jacobs 2004)
separately using three items that measured students’ per-
ceived abilities and expectancies for success in math and
science domains (e.g., “I am good at math/science” “I
usually understand math/science”). Responses for ability
self-concept were rated using a five-point scale
(1= strongly disagree; 5= strongly agree), with higher
scores reflecting higher ability self-concept (α= .75, math;
α= .77, science).

Task values Math and science task values (Eccles et al.
1997) measured students’ interest, enjoyment, and the utility
value they attached to math and science using five items for
each subject domain (e.g., “I enjoy math/science” “Math/
science is useful in everyday problems”). Responses for task
values were rated using a five-point scale (1= strongly
disagree; 5= strongly agree), with higher scores reflecting
greater task values (α = .80, math; α= .86, science).
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Altruism Four items were used to measure altruistic
values, indicating the importance that students attributed to
taking an active role in helping the community and righting
social injustices (α= .73). Students rated the extent (1= not
important; 2= somewhat important; 3= very important) to
which each of the four items was important to them in their
future life (e.g., “Helping other people in my community”
“Working to correct social and economic wrongs”). Higher
scores indicated greater altruistic values.

Family values Family values measured the importance that
students placed on marrying and having children (α= .69).
Students rated the extent (1= not important; 2= somewhat
important; 3= very important) to which each of the fol-
lowing two factors were important to them: “Finding the
right person to marry and having a happy family life” and
“Having children.” Higher scores indicated greater family
values.

Monetary value One item was used to assess youth’s
monetary values, which reflected the extent to which stu-
dents valued making substantial amounts of money as
adults. Students rated the extent (1= not important;
2= somewhat important; 3= very important) to which

“having lots of money” was important to them in their future
life. Higher scores indicated greater monetary values.

Math, science, and verbal ability

In the spring of ninth grade, the participants completed
standardized assessments of math, science, and verbal
ability. The math and science assessments were developed
by the National Assessment of Educational Progress
(National Assessment of Educational Progress 1986a, b).
The math test assessed students’ application, utilization, and
integration of math knowledge. The science assessment
measured students’ knowledge across three broad content
areas: physical science, life science, and earth and space
sciences, focusing on their ability to identify and apply
scientific principles and to use scientific inquiry to solve
problems. Multiple-group item-response theory (IRT)
methods were used to scale ninth grade math and science
scores using an original metric with a mean of 50 and a SD
of 10 (Miller and Kimmel 2012). A standardized test of
verbal comprehension developed by the Educational Test-
ing Service for the U.S. Department of Education was also
administered to students in the spring of ninth grade.

Table 1 Descriptive statistics
of students who participated in
wave two and those who did not

Variable Students in waves
1 and 2 (n= 1,762)

Students not in
wave 2 (n= 963)

p-value Effect size

Gender (1=male) 49 % 57% <.001 .08

Child race (1=black/Hispanic) 15 % 29% <.001 .16

Parent education 34 % 25% <.001 .10

Parent STEM occupation 22 % 17% .002 .06

Parent college encouragement 5.66 (3.25) 4.37 (3.20) <.001 .40

Parent math encouragement 1.35 (0.82) 1.25 (0.86) .009 .12

Parent science encouragement 1.14 (0.87) 1.01 (0.87) <.001 .15

Altruism 7.81 (1.94) 7.60 (2.07) .019 .10

Family values 5.10 (1.04) 4.98(1.07) .006 .11

Monetary importance 2.35 (0.60) 2.46 (0.62) <.001 .18

Reading achievement score 48.87 (24.89) 35.57 (21.90) <.001 .56

Honors Math Course (1= yes) 11 % 4% <.001 .11

Honors Science Course (1= yes) 9 % 2% <.001 .12

Algebra course at 8th grade (1= yes) 20 % 8% <.001 .15

High school calculus (1= yes) 14 % 5% <.001 .15

Math achievement score 61.31 (12.32) 53.90 (11.79) <.001 .61

Math ability self-concept 10.90 (2.39) 10.56 (2.46) .001 .14

Math task value 18.80 (3.62) 18.46 (3.98) .055 .09

Science achievement score 60.97 (10.53) 54.21 (11.32) <.001 .63

Science ability self-concept 10.69 (2.51) 9.97 (2.62) <.001 .18

Science task value 16.63 (4.38) 16.36 (4.39) .158 .06

Note Chi-square test was used for binary variables; otherwise, t-test was used. Effect size was measured by
Cramer’s V for binary variable and Cohen’s d for other variables
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Parent encouragement

We included student perceptions of parental encouragement
as indicators of contextual influences on students’ STEM
pursuit. Students reported on the extent to which they
received encouragement from parents toward higher edu-
cation in general, and toward math and science learning.
Parental encouragement variables included (a) parental
college encouragement (two items; α = .68), (b) parental
encouragement toward math learning (three items; α= .71;
e.g., “My parents have always encouraged me to work hard
on math”), and (c) parental encouragement toward science
learning (three items; α = .72; e.g., “My parents have always
encouraged me to work hard on science”). Parent college
encouragement was a combination of two items measuring
the highest level of education the parent would prefer for
their child (1= less than high school graduation; 8= doc-
torate, law, or other professional degree), and their level of
disappointment over their child not achieving this level of
education (1= very disappointed; 3= not worry about it).
Parent math and science encouragement variables used a
yes or no response scale (0=no; 1=yes) to confirm parents’
behaviors toward math or science learning. As parental
encouragement toward math learning was highly correlated
with parental encouragement toward science learning
(r= .76), we combined these two variables by averaging
them into one parental math and science encouragement
variable.

Other covariates

Several sociodemographic covariates were controlled for in
the analyses, including students’ gender, race/ethnicity,
parental education, and parental STEM employment.
Additionally, curriculum variables were also controlled for,
namely algebra course enrollment in the eighth grade and
whether math or science honors courses were taken at ninth
grade.

Results

We performed a latent profile analysis to investigate het-
erogeneity in cognitive competence in ninth grade by
identifying latent groups of students with similar test scores
on separate assessments of verbal, math, and science
achievement. Among 2725 participants, 185 students had
missing data on all three cognitive ability measures and
were therefore excluded from the analysis, yielding a final
sample size of 2540. We aimed to identify a parsimonious
model, offering the best fit for the smallest number of
meaningful groups. As such, we tested models by varying
the number of classes incrementally by one, starting with
one class and ending with 6 classes, comparing the fit and
interpretability of each model. We did not test beyond 6
classes as the 6-class solution resulted in one sparse cell
containing less than 5 % of the subjects. The Bayesian
Information Criterion (BIC, Schwartz 1978), entropy
(Ramaswamy et al. 1993), the Vuong–Lo–Mendell–Rubin
(VLMR) likelihood difference test, and the Parametric
Bootstrap Likelihood Validation Test (PBLVT) were all
used to compare model fit and to determine the optimal
class solution.

Table 2 presents the model fit indices for 1–6 class
solutions. BIC and the PBLVT suggested 6 classes as the
best fitting solution. However, entropy indicated that 5 and
6 class solutions had relatively poor separation of classes
(entropy <.70), suggesting that classes did not differ sig-
nificantly enough to distinguish students with distinct cog-
nitive profiles. The VLMR suggested that a 3-class solution
fit similar to a 4-class solution. Since the 3-class solution
had better entropy and also represented the more parsimo-
nious choice between the two solutions, we chose the
3-class solution as our final optimal grouping decision
(entropy= .77). The first group consisted of students with
high verbal, high math, and high science ability (n= 761;
50 % females). The second group consisted of students with
low verbal, moderate math, and moderate science ability
(n= 1,113; 51 % females). The third group consisted of

Table 2 Latent profile analysis
with two to six class solutions

Number of classes

2 3 4 5 6

Number of free parameters 10 14 18 22 26

Loglikelihood −27272.7 −26806.6 −26679.8 −26603.1 −26567.5
AIC 54565.42 53641.26 53395.53 53250.15 53186.95

BIC 54623.82 53723.01 53500.65 53378.63 53338.78

SBIC 54592.05 53678.53 53443.46 53308.73 53256.18

Entropy 0.8 0.773 0.734 0.709 0.705

LO-Mendell-Rubin adjusted LRT test p<.001 p<.001 .31 p<.001 .12

Parametric bootstrapped LRT p<.001 p<.001 p<.001 p<.001 p<.001
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students with low verbal, low math, and low science ability
(n= 666; 43 % females). Table 3 illustrates the descriptive
statistics for each group and Table 4 presents the correla-
tions among key constructs for each group.

We then conducted logistic regression analyses sepa-
rately for these three groups to examine which cognitive
and motivational factors were predictive of future STEM
employment (after controlling for verbal, math, and science
ability, course enrollment, parental encouragement toward
STEM learning, and family background variables) and how
these factors varied by cognitive strength profiles. The
standard error of model estimates was adjusted to account
for the dependence of students within the same school using
sampling weight (Asparouhov 2006). For the low-verbal/
low-math/low-science ability group, we excluded 8th grade
algebra and honor course enrollment in math and science
from the analysis since there were too few cases (<2 %)
taking these advanced-level courses.

Table 5 presents the main findings in the three ability
groups. In the high-verbal/high-math/high-science ability
group (n= 761), individuals with higher science task values
and lower orientation toward altruism were more likely to
select STEM occupations. In the low-verbal/moderate-
math/moderate-science ability group (n= 1113), individuals

with higher math test scores and math task value were more
likely to select STEM occupations. In the low-verbal/
low-math/low-science ability group (n= 666), individuals
with higher math ability self-concept were more likely to
select STEM occupations though the likelihood of choosing
STEM careers in this group was fairly low.

To examine whether the likelihood of STEM employ-
ment differed between the high-verbal/high-math/high-sci-
ence ability group and the low-verbal/moderate-math/
moderate-science ability group, we compared two models:
(a) a model with main effects that included ability group
and all independent variables of interest and (b) a model
with interactions between ability group and all independent
variables of interest. The likelihood ratio test suggests that
the interaction model provides significantly better fit over
the main effects model, χ2(19) = 41.58, p= .002.

Finally, we conducted sensitivity analyses by running the
same models including only subjects who participated in
both waves of data collection. Specifically, we examined
whether a model excluding participants who did not parti-
cipate in wave 2 (see Table 6) differed from the previous
model including the participants who did not participate in
wave 2 (see Table 5). The findings remained consistent
across both models suggesting the robustness of our findings.

Table 3 Descriptive statistics of the three cognitive ability profiles

Variable Low-Verbal/Low-Math/Low-
Science (N= 666)

Low-Verbal/Moderate-Math/
Moderate-Science (N= 1113)

High-Verbal/High-Math/
High-Science (N = 761)

p-value

Child gender (1=male) 57 % 50% 50% .005

Child race (1= black/Hispanic) 35 % 20% 8% <.001

Parent education 21 % 25% 48% <.001

Parent STEM occupation 14 % 18% 29% <.001

Parent college encouragement 3.16 (2.93) 4.98 (3.17) 6.84 (2.79) <.001

Parent math encouragement 1.00 (0.88) 1.30 (0.84) 1.56 (0.70) <.001

Parent science encouragement 0.77 (0.85) 1.05 (0.87) 1.39 (0.78) <.001

Altruism 7.54 (2.20) 7.57 (1.95) 8.16 (1.79) <.001

Family values 4.92 (1.12) 5.07 (1.03) 5.17 (1.00) <.001

Monetary values 2.48 (0.63) 2.39 (0.61) 2.31 (0.59) <.001

Reading achievement score 23.57 (12.64) 35.82 (15.74) 73.21 (14.12) <.001

Honors math course (1= yes) 1 % 5% 21% <.001

Honors science course (1= yes) 1 % 3% 17% <.001

Algebra course at 8th grade (1= yes) 2 % 7% 41% <.001

Math achievement score 43.50 (6.68) 58.08 (7.07) 71.67 (7.24) <.001

Math ability self-concept 10.07 (2.41) 10.70 (2.42) 11.38 (2.29) <.001

Math interest/task value 17.93 (4.19) 18.61 (3.63) 19.23 (3.42) <.001

Science achievement score 43.62 (6.17) 59.42 (5.52) 69.55 (5.77) <.001

Science ability self-concept 9.35 (2.45) 10.37 (2.49) 11.42 (2.40) <.001

Science interest/task value 15.80 (4.57) 16.34 (4.33) 17.30 (4.19) <.001

STEM vs Non-STEM career 6.4 % 12.5 % 23.2 % <.001

Note Chi-square test was used for binary variables; otherwise, F-test was used
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Discussion

Cognitive ability and task value/interest are crucial to the
successful pursuit of a STEM profession, but their relative
importance differs based on cognitive profiles across dif-
ferent subject domains. In this study, we examined whether
relative cognitive strengths and interests in math, science,
and verbal domains in high school predicted STEM career
employment better than absolute cognitive ability alone. We
identified three cognitive ability profiles: (a) an asymme-
trical profile characterized by moderate math and science
ability and lower verbal ability; (b) a symmetrical profile
characterized by high math, science, and verbal ability; and
(c) a symmetrical profile characterized by low math, sci-
ence, and verbal ability. As we hypothesized, the predictors
of STEM careers were different at each ability group.

Members of the group with low cognitive ability across
all three subject domains had a very low chance of STEM
employment (6.4 %) relative to members of the other two
groups (12.5 % for the low-verbal/moderate-math/moder-
ate-science group and 23.2 % for the high-verbal/high-math/
high-science group). This finding verifies that, while math

and science abilities do not have to be exceptionally high
for an individual to successfully pursue a STEM career,
high ability in math and science does increase an indivi-
dual’s chances of future STEM employment. On the other
hand, low skill levels in math and science likely provide a
barrier to entry into STEM careers that many individuals in
the low ability profile group may find extremely difficult to
overcome. However, it is interesting to note that youth with
relatively low math and science abilities were more likely to
be employed in a STEM career if they had greater math self-
concept. To some extent, this finding is consistent with the
relative cognitive and interest model: for youth with sym-
metrical low ability profile in multiple domains, their per-
ceptions of how competent they are at math may precede
cognitive aptitude for career decisions. Similar to indivi-
duals with symmetrical high ability profiles, youth with
symmetrical low ability profiles may be less likely to have a
singularly dominating ability self-concept form in any one
area. However, unlike youth with high ability, career
opportunities for youth with relatively low ability across
multiple domains are constrained by their lower cognitive
performance. Neither math, science, nor verbal skills

Table 5 Logistic regression analyses for the three ability groups to have a STEM Job

Low-Verbal/Low-Math/
Low-Science (N= 666)

Low-Verbal/Moderate-
Math/Moderate-Science
(N= 1113)

High-Verbal/High-Math/
High-Science (N= 761)

B SE Odds ratio B SE Odds ratio B SE Odds ratio

Gender (1=male) 0.20 0.58 1.22 0.17 0.25 1.19 0.20 0.19 1.22

Child race (1= black/Hispanic) −0.15 0.67 0.86 −0.24 0.30 0.79 −0.19 0.50 0.83

Parent education 1.14 0.56 3.12* 0.28 0.27 1.32 0.42 0.28 1.52

Parent STEM occupation −1.21 1.23 0.30 0.11 0.26 1.12 −0.34 0.26 0.71

Parent college encouragement −0.30 0.27 0.74 0.26 0.17 1.29 0.21 0.14 1.24

Parent math/science encouragement 0.56 0.27 1.75* −0.07 0.14 0.93 0.46 0.21 1.58*

Altruism −0.21 0.34 0.81 −0.05 0.14 0.95 −0.49 0.12 0.61***

Family values −0.04 0.23 0.96 0.06 0.12 1.06 −0.03 0.13 0.97

Monetary values −0.35 0.21 0.71 0.00 0.12 1.00 0.17 0.11 1.18

Reading achievement score −0.94 0.50 0.39 0.12 0.23 1.12 0.02 0.19 1.02

Algebra course at 8th grade (1= yes) 0.20 0.43 1.22 −0.11 0.31 0.90

Honors math course (1= yes) 0.12 0.49 1.12 0.45 0.27 1.57

Honors science course (1= yes) 0.76 0.50 2.13 0.13 0.30 1.14

Math achievement score −1.16 0.60 0.31 0.61 0.26 1.84* 0.22 0.29 1.25

Math ability self-concept 0.72 0.33 2.06* -0.04 0.14 0.96 0.41 0.14 1.51*

Math interest/task value 0.23 0.28 1.25 0.32 0.14 1.37* 0.05 0.16 1.05

Science achievement score 0.07 0.49 1.07 −0.06 0.29 0.94 0.18 0.31 1.20

Science ability self-concept −0.22 0.22 0.81 0.02 0.14 1.02 0.07 0.15 1.08

Science interest/task value 0.18 0.22 1.19 0.06 0.12 1.06 0.46 0.15 1.59**

R-square 0.37 0.12 0.26

Note All predictors were standardized except binary ones

*p< .05; **p< .01; ***p< .001
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emerge as a dominant strength for this group, so having a
greater ability self-concept in any one of these domains
should likely operate as a protective factor against lower
cognitive performance and lead to a greater likelihood of
employment in that field. In this case, having a greater
ability self-concept in math increased the likelihood of
future STEM employment.

For youth with high ability across verbal, math, and
science domains, science task value and lower altruistic
values were key motivators for selection of a STEM career.
Consistent with our hypothesis, having high ability in math
and science is important for success in STEM careers but
not sufficient to motivate pursuit of a STEM profession
(Ceci and Williams 2010; Maltese and Tai 2011). It is
noteworthy that it was neither math interest nor task value,
but rather the values individuals placed on science and
having lower altruistic concerns that predicted STEM
careers for individuals with high ability across math, sci-
ence, and reading. In contrast, for the low-verbal/moderate-
math/moderate-science ability group, math ability was the
most significant predictor of future STEM employment. As
we hypothesized, when youth have asymmetrical

achievement across several subject areas, they are more
likely to pursue a field that capitalizes on their strengths,
while simultaneously minimizing their weaknesses (Valla
and Ceci 2014). While high interest and task value in math
is still an important predictor of STEM employment for this
group, math ability emerges as a salient predictor.

These findings lend support for the hypothesis that relative
cognitive strengths in math, science, and verbal abilities are
stronger predictors of STEM career attainment than absolute
ability alone (Park et al. 2007; Riegle-Crumb et al. 2012;
Wang et al. 2013). Having an asymmetrically dominant
aptitude increases the likelihood of a strong ability self-
concept in that domain, which restricts career options to
capitalize on that strength. Conversely, individuals with
balanced high cognitive ability profiles have expanded career
opportunities and greater freedom to allow domain-specific
interests to guide their future employment (Valla and Ceci
2014). Ultimately, individuals with asymmetrical cognitive
ability profiles are more likely to minimize weaknesses and
capitalize on strengths, while individuals with symmetrical
cognitive high ability profiles allow their math and science
interests to inform broader career decisions.

Table 6 Logistic regression analyses for three ability groups to have a STEM job when excluding subjects without wave two data

Low-Verbal/Low-Math/
Low-Science (N= 314)

Low-Verbal/Moderate-
Math/Moderate-Science
(N= 719)

High-Verbal/High-Math/
High-Science (N= 621)

B SE Odds ratio B SE Odds ratio B SE Odds ratio

Gender (1=male) 0.21 0.59 1.24 0.18 0.25 1.19 0.20 0.19 1.22

Child race (1= black/Hispanic) −0.15 0.67 0.86 −0.25 0.31 0.78 −0.19 0.50 0.83

Parent education 1.13 0.56 3.08* 0.28 0.27 1.32 0.42 0.28 1.51

Parent STEM occupation −1.09 1.16 0.34 0.11 0.26 1.12 −0.34 0.26 0.71

Parent college encouragement −0.31 0.25 0.74 0.26 0.17 1.30 0.21 0.14 1.24

Parent math/science encouragement 0.56 0.27 1.75* −0.08 0.14 0.93 0.45 0.21 1.57*

Altruism −0.21 0.33 0.81 −0.06 0.14 0.95 −0.49 0.12 0.61***

Family values −0.04 0.23 0.96 0.06 0.12 1.06 −0.03 0.13 0.97

Monetary values −0.37 0.20 0.69 0.01 0.12 1.01 0.17 0.11 1.18

Reading achievement score −1.01 0.50 0.37* 0.12 0.23 1.12 0.02 0.19 1.02

Algebra course at 8th grade (1= yes) 0.21 0.43 1.24 −0.10 0.31 0.90

Honors math course (1= yes) 0.12 0.50 1.13 0.45 0.27 1.57

Honors science course (1= yes) 0.75 0.50 2.11 0.13 0.30 1.14

Math achievement score −1.14 0.63 0.32 0.61 0.26 1.84* 0.22 0.29 1.25

Math ability self−concept 0.74 0.34 2.09* −0.03 0.14 0.97 0.41 0.14 1.51*

Math interest/task value 0.22 0.28 1.25 0.31 0.14 1.36* 0.05 0.16 1.05

Science achievement score −0.04 0.52 0.96 −0.07 0.29 0.93 0.18 0.31 1.20

Science ability self−concept −0.22 0.22 0.81 0.01 0.14 1.01 0.07 0.15 1.08

Science interest/task value 0.15 0.21 1.16 0.06 0.13 1.07 0.47 0.15 1.60***

R-square 0.38 0.11 0.26

Note All predictors were standardized except binary ones

*p< .05; **p< .01; *** p < .001
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Implications for Practice

These findings highlight the need for new interventions to
successfully encourage young people to enter STEM fields.
First and foremost, increasing interest and value in math and
science is equally as valuable as enhancing academic ability
in these domains (Ceci and Williams 2010). However,
different strategies are needed for students with different
cognitive ability profiles. Initiatives mainly focusing on
increasing student cognitive achievement rather than inter-
est and value could be misleading, and may only work for
students with certain cognitive ability profiles. For youth
who have moderate skills in math/science and lower verbal
performance, focusing on enhancing math ability is espe-
cially important for them to fully realize their potential
cognitive strengths and pursue STEM employment. Helping
youth recognize, fulfill, and capitalize on their strengths
should aid students in establishing a career niche in which
they feel comfortable, confident, and successful.

For youth who have high ability across multiple
domains, it would be useful to nurture science interests and
reduce misperceptions by rebranding STEM fields as
careers that provide opportunities to benefit society and
interact with people (Diekman et al. 2011). Marketing
STEM careers as people-oriented and helpful occupations
may encourage the recruitment of a more diverse pool of
talented youth, particularly women who endorse altruism at
a higher rate than men, and are less likely to pursue STEM
(Ceci and Williams 2010). Special effort should also be
made to ensure that all students are well-informed of the full
array of options available in various STEM careers, and the
societal benefits associated with STEM, so that individuals
can better relate their personal goals and values to the utility
of these careers (Kell et al. 2013).

Second, career planning efforts should focus on helping
youth identify their cognitive strengths so they can better
navigate this process by capitalizing on their talent. How-
ever, the goal should never be to force adolescents into
career tracks in which they have no interest, or to encourage
them to curtail their career options too early. Rather, it is
important that we reduce misconceptions and biases
regarding STEM careers and consider the importance of
relative ability profiles in determining career paths. Youth
skills and interests need to be nurtured early, with an indi-
vidualized focus on enhancing strong skills and cultivating
weaker skills to increase the number of career options
available to students.

Limitations and Future Research Directions

The present study suggests that incorporating a relative
cognitive strength and interest model to identify divergent
pathways toward STEM employment, presents a promising

approach for successful intervention. However, there are a
number of areas in which additional research on this topic
is warranted. First, while career planning efforts are
undoubtedly important, it is worth noting that opportunities
to pursue STEM are not experienced equally by all U.S.
youth. In particular, we acknowledge that additional steps
are necessary to improve diversity in STEM majors and
professions. African Americans and Hispanics continue to
be underrepresented in STEM majors and careers (Landivar
2013). Barriers are often in place that keep racial minorities
from successfully pursuing STEM, such as a lack of per-
ceived belonging and representation among faculty and
students in STEM majors (Cheryan and Plaut 2010;
Malone and Barabino 2009). For many minority
students, the path to STEM is also complicated by the
fact that they are overrepresented in low performing,
poverty stricken schools, or placed in remedial classes or
low ability tracks that prevent preparation for a STEM
profession (Kelly 2009; U.S. Department of Education
NCES 2015). While addressing these considerations goes
beyond the hypotheses examined in the study, cultural
inclusiveness should be integral to all career planning
efforts in STEM.

Second, the pathway to a STEM career is undoubtedly a
developmental process, incorporating different sociocultural
and contextual factors at various points throughout one’s
lifespan. In this study, rather than review an exhaustive list
of factors from ninth grade to the mid-30s and parse out
those relative influences on employment, we focus on
intellectual and psychological factors in high school that
may lead to STEM careers. This refined focus comes from
our interest in identifying malleable cognitive and motiva-
tional factors during the high school years, a prime devel-
opmental period for students to form their STEM identities
and aspirations. However, we also recognize that college
enrollment, college majors, graduate studies, and the quality
of college instruction and experiences play a role in deter-
mining STEM careers. Future studies should examine
whether the cognitive and motivational factors identified in
high school predict STEM employment through college
enrollment, college majors, graduate majors, and college
instruction and experiences as potential mediators. Identi-
fying these mechanisms will help us provide adequate
support for STEM pursuits at different stages along the
pipeline. Furthermore, we also recognize that motivational
beliefs and achievement are influenced by broader socio-
cultural forces, such as poverty, prejudice and discrimina-
tion, family dysfunction, and school quality. Future research
should focus on identifying whether higher cognitive ability
and motivation in STEM operate as buffers against socio-
cultural risk factors, increasing the odds of STEM
employment, and informing intervention work focused on
promoting resilience.
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Third, although our study included encouragement from
parents in math and science learning as covariates, we did
not include measures of parental encouragement in non-
STEM areas, such as literature or the arts. Adding such
variables to the model may contribute more predictive
validity in further distinguishing individuals employed in
STEM from those employed in non-STEM careers. For
example, were members of the symmetrical high ability
profile employed in a non-STEM career more likely to
receive non-STEM encouragement compared to STEM
encouragement from their parents? Future research should
examine STEM versus non-STEM encouragement from
parents to determine the relative precedence that each takes
in determining future employment.

A final limitation concerns the age of the cohort in our
study. The Longitudinal Study of American Youth data
used in our study come from the same cohort with data
collection beginning in 1987 when the participants were in
seventh grade. Since the 1980s, great strides have been
made to increase math and science performance and inter-
ests in an effort to increase the size and diversity of the
STEM workforce in the United States. Therefore, exploring
career pathways among a more recent sample may help us
to understand the extent to which attitudes and views of
STEM have remained the same or changed over time (e.g.,
Do altruistic and communal values continue to be viewed as
incompatible with STEM to the same extent as the Long-
itudinal Study of American Youth cohort?).

Conclusion

The relative cognitive strengths and interests model pro-
vides a more nuanced view of how abilities and interests
shape pathways to a STEM career. Our study suggests that
improving math ability alone is not sufficient to increase the
size of the STEM workforce. Youth must also be interested
in or place high value on math or science (Maltese and Tai
2011; Wang et al. 2015). In particular, when cognitive
abilities are asymmetrical, focusing on math skill
improvement should increase the likelihood of a STEM
profession in the future, but when cognitive abilities are
symmetrical and high across multiple domains, improving
science interests/values and realigning STEM with com-
munal or altruistic goals may increase the likelihood of
producing a future STEM, professional. While career
choices for many individuals may be unfairly constrained
by sociocultural or economic forces, given the malleability
of cognitive ability and motivational beliefs, increasing the
size and diversity of the STEM workforce should be more
successful when greater effort is made to increase both
interests and ability in STEM, and to promote the important
role that STEM fields play in benefitting society and

improving people’s lives (Diekman et al. 2010, 2011).
Rather than using a one-size-fits-all approach to encourage
STEM career development, a tailored strategy taking into
account different cognitive profiles, motivational beliefs,
and economic and sociocultural barriers may provide the
optimal approach for addressing the complex mechanisms
that drive individual career decisions.
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