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ABSTRACT
We develop a theoretical and empirical basis for the design of teacher
professional development studies. We build on previous work by (a)
developing estimates of intraclass correlation coefficients for teacher
outcomes using two- and three-level data structures, (b) developing
estimates of the variance explained by covariates, and (c) modifying the
conventional optimal design framework to include differential covariate costs
so as to capture the point at which the cost of collecting a covariate
overtakes the reduction in variance it supplies. We illustrate the use of these
estimates to explore the absolute and relative sensitivity of multilevel designs
in teacher professional development studies. The results from these analyses
are intended to guide researchers in making more-informed decisions about
the tradeoffs and considerations involved in selecting study designs for
assessing the impacts of professional development programs.
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RECENT EFFORTS TO improve research in education have emphasized the value of well-designed
studies and documented specific design strategies to improve the quality and scope of inferences result-
ing from studies in education (e.g., Spybrook & Raudenbush, 2009). Although these strategies have
been widely developed and implemented in education studies for student outcomes, their development
and use in professional development studies with critical intermediate outcomes has trailed behind sig-
nificantly. Yet teacher professional development is seen as critical to improving the quality of schooling
and student growth because there is mounting evidence that teachers vary greatly in their effectiveness
(e.g., Nye et al., 2004; Darling-Hammond, 1997). Recognition of the challenges and importance of
improving teaching has led to widespread interest in research that can inform the rigorous design of
professional development programs (e.g., Wayne et al., 2008; Kennedy, 2016).

Policymakers and funding agencies have directed considerable resources toward professional devel-
opment studies focused on improving teacher effectiveness through teacher development (Birman
et al., 2007). For instance, through many different programs and topics, the Institute of Education Sci-
ences (IES) has funded scores of professional development and teacher effectiveness projects. With the
goal of developing an empirical basis for promoting and developing effective teaching, IES has recently
established an entire program devoted to research on effective teaching and teacher development (IES,
2012).

Despite the national emphasis on improving teaching effectiveness, there have been several signifi-
cant issues hampering rigorous research on teacher professional development. A critical issue is that
although there is an empirical basis concerning the types of knowledge teachers need (e.g., Hill, Rowan,
& Ball, 2005), literature delineating theories of how teachers learn and update their practice are

CONTACT Ben Kelcey ben.kelcey@gmail.com
© 2016 Taylor & Francis

THE JOURNAL OF EXPERIMENTAL EDUCATION
http://dx.doi.org/10.1080/00220973.2016.1220911

http://dx.doi.org/10.1080/00220973.2016.1220911


underdeveloped (Kennedy, 2016). An important deficit in this area is the lack of clarity about the
mechanisms through which professional development operates.

Although the theories of action underlying programs vary widely, research has typically outlined the
general professional development process as it relates to student achievement by focusing on three
sequential and increasingly distal outcomes of professional development: teacher knowledge, classroom
instruction, and student learning (Desimone, 2009). Professional development programs are generally
designed to build teacher knowledge and skills, which in turn are thought to improve classroom teach-
ing and effect gains in student achievement (Yoon et al., 2007). The comprehensive study of each of
these outcomes is critical to understanding how professional development programs come to be effec-
tive and mapping the teacher development process (Desimone, 2009).

Assessments of the mechanisms through which professional development operate are critical to
assessing the validity of and advancing scientific theories underlying teacher development (Kennedy,
2016). Black box approaches that only estimate the impact of a program on, for example, student
achievement are limited because the results can inform us of whether the program improved achieve-
ment but cannot explain why or provide valid assessments of the theory of action that underlies the
program. For these reasons, proximal outcomes like teacher knowledge and instruction often represent
critical outcomes of professional development and mediators through which we can test the theory of
action.

A second complementary methodological issue is clarifying the types of designs that are amenable
to the theory of contemporary professional development (Kennedy, 2016; Wayne et al., 2008; Yoon,
Zhu, Cronen, & Garet, 2008). Many teacher development programs are structured to foster collabora-
tive social processes, learning, and instruction and thus are designed to operate at the school- or dis-
trict-level (Blank et al., 2008; Borko, 2004; Desimone, Garet, Birman, Porter, & Yoon, 2003; Kennedy,
2016). Literature has consistently emphasized the importance of aligning the design of a study with the
theory underlying the intervention (e.g., Rossi, Lipsey, & Freeman, 2004).

Many professional development programs rely on collective participation and collaboration among
teachers within schools or districts as a critical lever to promote teacher change (Kennedy, 2016). For
these programs, professional development necessarily integrates learning opportunities across teachers
in schools and/or a district. Study designs that directly incorporate consideration of the multilevel
structure of professional development and schooling permit a more faithful implementation and
representation of the collaboration that undergirds many theories of contemporary professional
development.

Cluster-randomized and multisite (blocked) cluster-randomized designs may be well-positioned to
improve the evidentiary base surrounding effective professional development. Cluster-randomized and
multisite cluster-randomized designs have played a critical role in evaluating a broad array of educa-
tional initiatives (e.g., Spybrook & Raudenbush, 2009; Spybrook, Shi, & Kelcey, 2016). When imple-
mented correctly such designs can accommodate the precise types of multilevel theories of action,
structures, and treatment assignments that are common in many professional development programs.

At the same time, though potentially better aligned with many professional development programs
in theory, cluster-randomized and multisite cluster-randomized designs may be impractical in some
settings. For instance, such designs tend to be less efficient as compared to individually randomized
designs, often requiring larger sample sizes to achieve comparable power. For this reason, there has
been substantial research into accounting for the reduced efficiency through a priori estimates of the
intraclass correlation coefficient for a wide variety of valued outcomes and populations (e.g., Spybrook,
2013).

For instance, empirical investigations of the intraclass correlation coefficient and their impacts on
design have been documented for student outcomes such as mathematics (e.g., Bloom, Richburg-
Hayes, & Black, 2005; Hedges & Hedberg, 2007a; Konstantopoulos, 2009), writing (Jaciw, Lin, & Ma,
2014), verbal fluency (Jacob, Zhu, & Bloom, 2010), reading comprehension (Brandon, Harrison, &
Lawton, 2013; Hedberg & Hedges, 2014; Schochet, 2005), science (Spybrook, Westine, & Taylor, 2016;
Westine, Spybrook, & Taylor, 2014), attendance (Jacob, Zhu, & Bloom, 2010), emotional and behav-
ioral outcomes (Dong et al., in review; Jacob, Zhu, & Bloom, 2010), adult basic education outcomes
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(Bloom, 1995), and health outcomes (Jacob, Zhu, & Bloom, 2010). Similarly, this research has been
applied to a wide range of student populations including pre-kindergarten grades (e.g., Schochet,
2005), elementary grades (e.g., Schochet, 2008), and high school grades (e.g., Spybrook, Westine, &
Taylor, 2016); rural and urban populations (e.g., Hedges & Hedberg, 2007b); U.S. populations (Hed-
berg & Hedges, 2014), and European and global populations (Zopluoglu, 2012).

The foundational value of this type of research has also been well established outside the boundaries
of education and has included similar work on, for example, agricultural outcomes (e.g., Geyer, in
review), epidemiological outcomes (Isaakidis & Ioannidis, 2003), HIV and pregnancy prevention out-
comes (Glassman, Potter, Baumler, & Coyle, 2015), and household economic outcomes (Geyer, in
review). Collectively, this research has led to the formation of empirically based guidelines that provide
a careful mapping between study designs involving these outcomes, the organization of schooling or
the multilevel structure, and the nature of the intervention under study. In turn, these guidelines have
been correlated with dramatic improvements in study design and capacity over recent decades and
have been identified as a critical step toward improving the field’s capacity to conduct high-quality
research studies that support causal inferences (Spybrook, Shi, & Kelcey, 2016; Spybrook & Rauden-
bush, 2009).

Within education, however, this line of inquiry has almost exclusively focused on study design using
student outcomes. There has been very little research establishing an empirical basis and probing the
feasibility of multilevel designs within the context of teacher professional development. Yet, critical
assessments of the quality and rigor associated with teacher development studies have demonstrated
that very few studies leverage designs that buttress causal inferences and provide adequate statistical
power to detect non-negligible effects (Kelcey & Phelps, 2013; Kennedy, 2016; Yoon et al., 2007).
Understanding the types of designs that are practically and theoretically amenable to studies of con-
temporary professional development programs is exceptionally important because it directly influences
the scope of data samples and controls the types of research questions we can address with multilevel
designs (Schochet, 2011).

Collectively, the results from previous studies outside of professional development point
toward a pressing need for empirical estimates of design parameters specific to professional
development studies (e.g., Jacob, Zhu, & Bloom, 2010). In particular, an important outcome of
previous literature concerning the magnitudes of the intraclass correlation and variance explained
parameters is that values vary widely both within a discipline across outcomes and across disci-
plines (e.g., Spybrook, 2013). For instance, within a single study, Jacob, Zhu, and Bloom (2010)
reported intraclass correlation coefficients ranging from zero to over 0.30 across a dozen different
student outcomes. These observed differences have important implications for study design
because the sensitivity of multilevel designs to detect effects is inversely proportional to the intra-
class correlation coefficient. More practically, power estimates tend to be susceptible to disparities
between the assumed and actual values of the intraclass correlation coefficient (e.g., Hedges &
Hedberg, 2007; Spybrook & Raudenbush, 2009). Given the national emphasis on teacher effec-
tiveness and professional development and the increasing number of large-scale nationally funded
professional development studies, it is critical that we develop the resources and capacity to ade-
quately design professional development studies and understand their capacity to address causal
questions of policy interest (IES, 2012; Spybrook, Shi, & Kelcey, 2016).

Purpose

In this study, we build on previous work on the design of professional development studies through
three complementary aims. First, using a large national data set on teacher professional development,
we develop estimates of intraclass correlation coefficients for teacher knowledge outcomes using two-
and three-level data structures. The careful planning of cluster- and multisite cluster-randomized stud-
ies requires information concerning plausible values of the intraclass correlation coefficients specific to
the outcome. We provide empirical estimates of the variance decomposition across teachers, schools,
and districts for teacher knowledge outcomes.
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Second, we estimate the variance in these outcomes explained by several covariates under the same
two- and three-level data structures. An important conclusion from previous statistical and empirical
studies of design efficiency is that adjusting for differences on key covariates can substantially improve
the power and feasibility of designs. In many instances, the explanatory power of covariates, such as
the pretest, can be used to reduce the sample size necessary to adequately power a study and thus sub-
stantially lower the cost of the study (e.g., Hedges & Hedberg, 2007). We study the value of adjusting
for a pretest as well as several other variables across multiple outcomes and a wide range of professional
development programs.

Finally, we use the aforementioned empirical estimates to explore the absolute and relative
sensitivity of several types of cluster- and multisite cluster-randomized designs in terms of the
minimum detectable effect sizes they are likely to yield in professional development studies. The
analyses outline how one might use the plausible estimates to evaluate and improve designs
through three connected strategies. First, we illustrate how to map out the relative sensitivity (as
measured by the minimum detectable effect size) of several designs for an assumed cost structure.
Second, we introduce a strategy to examine when and to what extent designs that use covariance
adjustment outperform unconditional designs. An important practical limitation of extant litera-
ture concerning study design is that it generally does not consider the tradeoff between the addi-
tional costs associated with collecting covariate data and the resulting decrease in sample size
under a fixed budget. For example, although covariance adjustment on prognostic covariates may
produce more-efficient designs, collecting covariates is often paired with increased costs. Given a
fixed budget, such increased costs may result in smaller sample sizes and ultimately a less sensi-
tive design in terms of the minimum detectable effect size. We develop a simple strategy based
on the conventional optimal design framework to examine tradeoffs associated with alternative
(un)conditional design specifications with different costs.

Method

Data

To explore empirical estimates of design parameters as they apply to the design of multilevel professional
development studies, we drew on data from the Investigating the Development and Measurement of
Mathematical Knowledge for Teaching study. This study surveyed teachers across the United States as
they participated in professional development programs. Teachers were measured in the specific knowl-
edge area associated with the content of their professional development before and after they participated
in a professional development program. Overall the sample contained 152 different professional develop-
ment programs. These programs were diverse and included, for instance, trainings that varied in length,
depth, and density (e.g., lasting from a few days to multiple years), varied in pedagogical focus (e.g., con-
tent knowledge, instructional practice), and varied in substantive content focus (e.g., geometry, algebra).

Despite its scale, our sample was a convenience sample of teachers, schools, districts, and profes-
sional development programs. Professional development providers self-selected the mathematical
knowledge for teaching assessment and in many programs teachers may have self-selected to partici-
pate in the professional development program. It is also unclear how the characteristics of this sample
might relate to teachers or schools nationally, regionally, or along other types of stratification. Further,
we note that empirical estimates of variance and covariance can be susceptible to systematic differences
among subgroups, features of professional development programs, and types and areas of outcomes. As
a result, we are cautious to note that our subsequent analyses serve only as a preliminary investigation
and illustration of design considerations for studies of professional development.

Across the outcomes, our samples represented 9,352 teachers, 3,540 schools, and 1,586 districts,
with sample cluster sizes generally ranging from two to eight teachers per school and two to four
schools per district. Overall, just over a fifth of the teachers maintained a certification for teaching
mathematics and the majority had between 4 and 15 years of experience. Table 1 presents summaries
of the teachers.
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Measures
Our analyses in this study focused on assessments drawn from the Mathematical Knowledge for
Teaching (MKT) scales developed by the Learning Mathematics for Teaching project (http://www.
umich.edu/»lmtweb/; Hill, Schilling, & Ball, 2004). MKT items represent one of the most fully devel-
oped examples of content knowledge for teaching assessments. The items were designed to focus
directly on the particular types of mathematics knowledge teachers use in mathematics teaching. In
contrast to conventional content questions that simply assess whether teachers themselves can do the
mathematics that students are expected to learn, MKT measures focus on the specialized forms of
mathematical knowledge only encountered in teaching mathematics. The assessment tasks focus on
the mathematical problems that teachers encounter as they, for example, look for patterns in student
errors, size up whether a nonstandard approach would work in general, or select a content representa-
tion that is well suited to supporting a learning goal (Ball, Thames, & Phelps, 2008).

To illustrate the unique measurement approach represented by the Learning Mathematics for
Teaching (LMT) measures, an example item is presented in the Appendix. This item illustrates
the difference between knowing simply the mathematics students are learning and knowing the
specialized content needed to teach the mathematics to students. This distinction is important
for considering the relevant assessment outcomes to use in studies of mathematics professional
development. While the basic mathematics that students are expected to learn is clearly critical
for teaching, this mathematics is typically not the primary focus of mathematics professional
development. Instead, mathematics professional development is typically focused on the special-
ized types of mathematics encountered when teaching this content. As illustrated in the example
in the Appendix, to provide a correct answer to this particular test item, teachers need to use
their mathematical knowledge to select an appropriate story problem to illustrate a mathematics
calculation; this is both different and more demanding than simply providing the correct answer
to the story problem. Because MKT measures are broadly representative and closely tied to both
the content of professional development and to teaching practice, they are well suited for assess-
ing the outcomes of professional development and examining differences in knowledge that are
associated with other valued outcomes (e.g., Hill, Rowan, & Ball, 2005).

The measures used in this study drew on computer implementations of the MKT assessments that
allowed professional development providers to assess teachers’ content knowledge for teaching. Several
parallel forms were developed for each of the five different mathematics outcomes and were scored
using item response theory. The reliabilities of these assessments ranged from 0.74 to 0.90 (see http://
www.umich.edu/»lmtweb/ for more information) and forms were equated using item response linking
methods (Hill & Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Schilling, & Ball, 2004). These assessments
were delivered to participants through the online Teacher Knowledge Assessment System (TKAS) at
the beginning and end of their professional development programs.

Our analyses in this study focused on knowledge in five different content areas that are common in
mathematics professional development: (a) elementary school number concepts and operations;

Table 1. Sample descriptive statistics.

Sample Size Years of Experience

Outcome Teachers Schools Districts Pre-test Post-test Math Certified 0–3 4–15 >15

EG 727 348 147 .24 (.92) .48 (.87) .23 .16 .58 .26
ESNCO 3,337 992 371 .02 (.87) .29 (.90) .07 .20 .53 .27
ESPFA 2,071 610 237 ¡.18 (.95) .02 (1.07) .07 .19 .55 .26
MSNCO 1,019 502 266 .19 (.89) .38 (.98) .37 .25 .54 .21
MSPFA 2,198 1,088 565 .15 (.93) .26 (.92) .41 .23 .57 .20

Notes. ESNCO: elementary school number concepts and operations; ESPFA: elementary school patterns, functions, and algebra; EG: ele-
mentary geometry; MSNCO: middle school number concepts and operations; and MSPFA: middle school patterns, functions, and
algebra. We present the mean for categorical variables and the mean and standard deviation for continuous variables.
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(b) elementary school patterns, functions, and algebra; (c) elementary geometry; (d) middle school
number concepts and operations; and (e) middle school patterns, functions, and algebra.

In addition to posttest scores from the MKT measure, the analyses examined several covariates col-
lected at the onset of the professional development programs to understand how they might improve
the sensitivity of designs in terms of the minimum detectable effect size they yield. We considered
covariance adjustment for three different pretreatment covariates: (a) pretest, (b) teacher certification
in mathematics education, and (c) teacher experience. We considered these particular covariates
because prior studies have found them to be moderately predictive of teachers’ knowledge.

For the pretest, teachers were measured in the same knowledge area as their post-test just before
they participated in a professional development program. Teacher certification and experience were
taken from a survey that accompanied the pretest. Certification was a simple indicator of whether a
teacher has a permanent or professional certification in the area mathematics and was self-reported by
teachers. We described teaching experience using 3 categories: up to 3 years of teaching, 4–15 years of
teaching, or more than 15 years teaching.

Missing data
Given the large and diverse nature of our sample, the study sustained missing data within each sample
originating from item nonresponse at the teacher level (e.g., Schafer & Graham, 2002). Across all sam-
ples, there was missing item information on approximately 13% of the variables (there was no unit
nonresponse, only item nonresponse). Rather than remove cases with incomplete data, we used the
three-level multiple imputation methods detailed in Asparouhov and Muthen (2010). We used an
unrestricted multilevel imputation model that paralleled the three-level conditional analytic model
detailed below (see equation 7) but included all of the aforementioned variables in our study. Our
imputation approach implicitly assumes that data are missing at random (MAR), conditional upon the
observed variables (Little & Rubin, 2002). As with all studies that draw upon multiple imputation and
this assumption, because MAR is an untestable assumption, the validity of our subsequent results
depends on the strength of this assumption under the observed variables. We then generated five sepa-
rate imputed data sets, each containing different plausible values of the missing data points. Subsequent
investigations repeated analyses using each of these five data sets. We present the pooled results across
the five imputations and the corresponding uncertainty using appropriate procedures (Little & Rubin,
2002).

Analyses

Our investigation into design considerations for multilevel professional development studies was
divided into three primary components. The first component assembled empirical estimates of the
intraclass correlation coefficients and the second examined variance explained by covariates. The third
component applied these estimates to the design of professional development studies and assessed the
comparative advantage of several designs through an evaluation of the minimum detectable effect sizes.

Empirical estimates
To address the first component, we estimated intraclass correlation coefficients and the variance reduc-
tion power of covariates using a series of hierarchical linear models (Raudenbush & Bryk, 2002). For
the two-level designs with teachers nested within schools (ignoring districts), we used the following
unconditional specification:

Y .A/
ij Dp0j C eij e»N.0; s2

1/

p0j D b00 C u0j u»N.0; s2
2/;

(1)

where Y.A/
ij is the post-program knowledge level for knowledge outcome A for teacher i in school j; p0j

is the average knowledge score for teachers in school j; eij is the teacher specific error with an assumed
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normal distribution centered at zero with variance s2
1; b00 is the grand mean knowledge score; and u0j

is the school specific random effect for school j with an assumed normal distribution with mean zero
and variance s2

2. The unconditional intraclass correlation coefficient was estimated as

r2 D s2
2 6 .s2

1 C s2
2/; (2)

where r2 is the school-level intraclass correlation coefficient and the denominator describes the total
unconditional variation in the outcome. The variances of the residuals, s2

1, and school random effects,
s2
2, also serve as the baseline estimates from which we will estimate the proportion of variation

explained by covariates in the conditional models.
For the three-level designs with teachers nested within schools nested within districts, we used the

following unconditional specification:

Y .A/
ijk Dp0jk C eijk e»N.0; s2

1/

p0jk D b00k C u0jk u»N.0; s2
2/

b00k D g000 C r00k r»N.0; s2
3/;

(3)

where Y .A/
ijk is the knowledge level for knowledge outcome A for teacher i in school j in district k; p0jk is

the average knowledge score for teachers in school j in district k; eijk is the teacher-specific error; b00k is
the average score in school k; u0jk is the school-specific random effect for school j; g000 is the overall
average knowledge score; and r00k is district-specific random effect for district k with variance s2

3. We
now have two unconditional intraclass correlation coefficients:

r2 D s2
2=.s

2
1 C s2

2 C s2
3/

r3 D s2
3=.s

2
1 C s2

2 C s2
3/;

(4)

where r2 is the proportion of outcome variance attributable to differences among schools and r3 is the
proportion of outcome variance attributable to differences among districts. Similar to the two-level
model, these variance estimates serve as the baseline estimates from which we estimated the proportion
of variation explained by covariates in the conditional models.

Because our estimates are based on varying sample sizes and small changes in the intraclass correla-
tion coefficient can impact the efficiency of designs, we also estimated confidence intervals using a mul-
tilevel parametric bootstrap. We describe the uncertainty of the intraclass correlation coefficient
estimates by constructing empirical confidence intervals (95%) using exact percentiles (i.e., 2.5% and
97.5%) of 1,000 bootstrapped estimates.

To assess the variance explained by several pretreatment covariates, we estimated the change in var-
iance due to covariance adjustment. We modified the unconditional models to include teacher covari-
ates and their aggregates at higher levels. For two-level models we used

Y .A/
ij Dp0j Cp1.Xij ¡Xj/C eij e»N.0; s2

1
» /

p0j D b00 C b1Xj C u0j u»N.0; s2
2
» /: (5)

Continuing with the aforementioned notation, we used Xij as a covariate for teacher i in school j and
Xj as the school-specific mean of this covariate. In this model, our estimates of the residual variance,
s~1

2 , and the variance of the school random effects, s~2
2, represent the adjusted variation in the outcome

conditional upon the respective covariates. The reduction in variance supplied by the covariate(s) using
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the respective variance components estimated is

R2
: D .s2

: ¡ s2
:» /=s2

: ; (6)

where R2
: represents the reduction in teacher- (R2

1) or school-level (R
2
2) outcome variance attributable to

the covariates, respectively.1

For three-level models we used

Y .A/
ijk Dp0jk Cp1.Xijk ¡Xjk/C eijk e»N.0; s2

1» /

p0jk Db00k C b1.Xjk ¡Xk/C u0jk u»N.0; s2
2
» /

b00k D g000 C g001Xk C r00k r»N.0; s2
3
» /; (7)

We now introduce s2
3
» as the adjusted district-level variation and we used Xij as a covariate for

teacher i in school j in district k, with Xjkas its school-specific mean and Xjk as its district-specific
mean. The reduction in variance attributable to a covariate at each level was estimated using formulas
similar to expression (6).

Design implications
In the second component of our analysis we explored how we might use the aforementioned
results to assess and improve the sensitivity of designs. More specifically, a common goal of study
design is to identify the design most sensitive to potential differences between the treatment
groups given fixed constraints. Although there are multiple approaches to describe the sensitivity
of a design, we summarized the sensitivity of designs using minimum detectable effect sizes (see
details below).

We described design sensitivity through the minimum detectable effect size for two main reasons.
First, the use of the minimum detectable effect size metric is widespread and has a direct correspon-
dence to alternative design sensitivity measures such as power (Bloom, 2008). Second, the minimum
detectable effect size can be especially useful for outcomes that have little or no empirical basis for
interpreting effect size. More specifically, there is a growing body of research that has argued against
effect size rules of thumb in favor of anchoring effect sizes in empirical estimates specific to the context
under study (e.g., Hill, Bloom, Black, & Lipsey, 2008). Because there is a lack of evidence describing the
empirical distribution of effect sizes in professional development, we report minimum detectable effect
sizes under different sample sizes and cost structures rather than select arbitrary effect sizes and report,
for example, power.

The analyses below demonstrate how to use the estimates of the intraclass correlation coefficients
and variance explained by a covariate to evaluate minimum detectable effect sizes and assess the rela-
tive advantage of covariance adjustment on different covariates under different cost structures. We out-
line the designs and analytic approaches we considered in assessing the sensitivity of designs and their
relative rank order for a given set of constraints.

Designs considered
We sampled five types of designs2: (a) two-level teacher-randomized designs that block on schools and
allow for effects to vary across schools but ignored districts, (b) two-level school-randomized designs
that ignored districts, (c) three-level district-randomized designs, (d) three-level school-randomized
designs that block on districts and allow effects to vary across districts, and (e) three-level school-ran-
domized designs that block on districts and constrain the variability in treatment effects to zero. The

1R2 values are not well defined in multilevel models because variance can increase with the introduction of covariates. Our approach
follows the literature by using pseudo-R2 values to describe the reduction in variation (Hedges & Hedberg, 2007; Jacob, Zhu, &
Bloom, 2010; Spybrook & Raudenbush, 2009).

2For a point of reference, we also considered teacher-randomized designs that ignore schools and districts.
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purpose in using these designs was to illustrate the use of the parameter estimates in several common
designs that lend themselves to the multilevel nature of professional development rather than to com-
prehensively examine all possible designs and scenarios. By contrasting these designs, we intended to
demonstrate the conditions under which covariance adjustment and blocking on school or district
membership might improve the absolute and relative sensitivity of a design. We describe the designs in
more detail below.

We adopted the following specification for two-level teacher-randomized designs that block on
schools:

Y .A/
ij Dp0j C d0jTij Cp1.Xij ¡Xj/C eij e»N.0; s2

1
»
d

/

p0j D b00 C b1Xj C u0j u0j »N.0; s2
2
»
d

/

d0j D dC u1j u1j »N.0; t22/

(8)

Continuing with the aforementioned notation we now introduce Tij as the treatment indicator and d

as the estimated overall treatment effect and u1j as the school-specific change in the overall treatment
effect with variance t22. We use s2

1
»
d

and s2
2
»
d

to denote the levels one and two variance components for

the outcome when they are conditional upon the treatment and covariates and use s2
1d and s2

2d when
the variance components are conditional upon only the treatment.

Similarly, using the same notation we specified the two-level school-randomized experiments with
teachers nested within schools (ignoring districts) as:

Y .A/
ij Dp0j Cp1.Xij ¡Xj/C eij e»N.0; s2

1
»
d

/

p0j Db00 C dTj C b1Xj C u0j u»N.0; s2
2
»
d

/:
(9)

For three-level district randomized designs that assume teachers are nested within schools nested
within districts, we used the following specification:

Y .A/
ijk Dp0jk Cp1.Xijk ¡Xjk/C eijk e»N.0; s2

1
»
d

/

p0jk D b00k C b1.Xjk ¡Xk/C u0jk u»N.0; s2
2
»
d

/

b00k D g000 C dTk C g001Xk C r00k r»N.0; s2
3
»
d

/;

(10)

using notation following that of earlier models.
For three-level school randomized designs that block on district and allow treatment effect variabil-

ity via random district effects, we used the following multidistrict school-randomized model:

Y .A/
ijk Dp0jk Cp1.Xijk ¡Xjk/C eijk e»N.0; s2

1
»
d

/

p0jk D b00k C d00kTjk C b1.Xjk ¡Xk/C u0jk u»N.0; s2
2
»
d

/

b00k D g000 C g001Xk C r00k r00k »N.0; s2
3
»
d

/

d00k D dC r01k r01k »N.0; t23/ ;

(11)

with r01k representing the district-specific treatment effect deviation from the overall average treatment
effect, d, and t23summarizing the variability of these deviations. For the final design (E) that constrained
effect variation to zero, we drew on fixed district effects. Specifically, we amended the previous expres-
sion (11) so that r00k represented fixed effects (and thus dropping Xk) and constraining r01k to zero (no
treatment variation across districts).
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Optimal sample allocation
A major factor driving the sensitivity of a design is the sample size. Although the sample sizes at each
level contribute to the sensitivity of a design, the relative contribution of the sample sizes is governed,
in part, by the variance decomposition and the relative cost of sampling units at each level. Literature
has developed approaches to identify the most efficient (smallest error variance) or optimal sampling
strategy given the intraclass correlation coefficient(s) and the costs of sampling units at each level (e.g.,
Raudenbush, 1997).

To identify the sampling strategies that produce the smallest error variance for a fixed set of intra-
class correlation coefficients and cost structure, we adopted a framework such that the total cost of col-
lecting data for a study was a linear function of the sample size at each level (Raudenbush, 1997).
Using c1 as the cost per teacher, c2 as the cost per school, c3 as the cost per district, n1 as the number of
teachers per school, n2 as the number of schools per district, and n3 as the number of districts, the total
cost of the study is summarized by (for designs that ignore districts we assume districts do not contrib-
ute to the total cost)

CD c3n3 C c2n3n2 C c1n3n2n1 (12)

The sample allocations across levels that produce the minimum variance of the treatment estimate
are as follows (Hedges & Borenstein, 2014). For two-level teacher-randomized within blocks defined
by the schools design, the optimal number of teachers per school to sample, nO1 , is

nO1 D 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
2c1

.1¡R2
1/.1¡ r2d/

.1¡R2
T/v2r2d

� �s
; (13)

where r2d D
s2
1d

s21d
C s22d

, v2 D t22
s22d
, and R2

T2
D t22 ¡~t22

t22
so that t22 is the unconditional treatment effect variation

across sites and ~t22 is the treatment effect variation across sites conditional on the covariates. The result-
ing two-level sample size for a given budget can then be recovered using the total cost expression. For
two-level school-randomized designs that ignore districts, the optimal number of teachers per school
to sample, nO1 , is

nO1 D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
c1

.1¡R2
1/.1¡ r2d/

.1¡R2
2/r2d

� �s
where r2d D

s2
1d

s2
1d C s2

2d

: (14)

For three-level district-randomized designs, the optimal number of teachers per school, nO1 , and the
optimal number of schools per district, nO2 , is

nO1 D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
c1

.1¡R2
1/.1¡ r2d ¡ r3d/

.1¡R2
2/r2d

� �s
and nO2 D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3
c2

.1¡R2
2/.r2d/

.1¡R2
3/r3d

� �s
; (15ab)

where r2d D
s22d

s21d
C s22d

C s2
3d

and r3d D
s23d

s21d
C s22d

C s23d
. Under three-level school-randomized experiments
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that block on districts, the optimal sample schemes are

nO1 D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
c1

.1¡R2
1/.1¡ r2d ¡ r3d/

.1¡R2
2/r2d

� �s
and nO2 D 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3
2c2

.1¡R2
2/r2

.1¡R2
T3
/v3r3

 !vuut ; (16ab)

where t23 is the unconditional treatment effect variation across sites and~t22 is the treatment effect varia-

tion across sites conditional on the covariates such that R2
T3
D t23 ¡~t23

t23
and v3 D t23

s23d
.

Covariate cost threshold
We next explored the relative sensitivity of the proposed designs by considering differential costs per
unit under unconditional and conditional designs. We developed a type of cost inflation threshold that
captures the point at which the cost of collecting a covariate overtakes the reduction in variance it sup-
plies such that a conditional design results in a net increase in minimum detectable effect size.

Literature has generally supported designs that measure and adjust for pretreatment covariates because
they tend to increase efficiency and decrease the minimum detectable effect size (e.g., Raudenbush, Marti-
nez, & Spybrook, 2007). However, literature has not considered the potential cost tradeoffs associated
with collecting pre-treatment covariates. For instance, although designs that adjust for a pre-test may be
more efficient than unconditional designs, it is likely that designing, collecting, and/or administering a
pre-test may increase the cost per unit. Under a fixed budget, these increased costs may result in a smaller
sample size for the conditional design that includes a teacher-level pre-test than for the unconditional
design and, ultimately, yield a less sensitive design compared to unconditional designs.

Our examination begins by continuing with the conventional optimal design framework outlined
above (e.g., Raudenbush, 1997). We then simply modify this cost structure to incorporate the potential
for differential per unit data collection costs under designs that condition on no covariates or different
covariates. In turn, we use the adjustments to explore how we might assess the increased costs associ-
ated with collecting covariate information under three simple scenarios.

The first scenario considers a simple increase in the cost of sampling teachers (only). For instance,
this cost structure might be appropriate when additional costs per teacher are incurred because of col-
lecting teacher questionnaire information from each teacher. We modified the aforementioned cost
structure so that the cost per unit was more for designs that collected a covariate (e.g., pre-test, teacher
certification) than for an unconditional specification. The cost of sampling a teacher under an uncondi-
tional specification was c1 but the cost of sampling a teacher when collecting a covariate was k1c1. Here
we use k1 as a cost inflation factor. For example, when k1 equals 2, the cost per teacher under a condi-
tional specification (i.e., collecting a covariate) would be twice as much as that of an unconditional
specification (i.e., not collecting covariate information). Under this situation, the total cost of a study
with a covariate would be

CD c3n3 C c2n3n2 C k1c1n3n2n1: (17)

In turn, we defined the covariate cost inflation threshold as the inflation factor for which the mini-
mum detectable effect size for the covariate design is equal to that of the unconditional design.

In the second scenario, we modified the cost structure such that the cost per school was more for
designs that collected covariates than for an unconditional design. In contrast to the first scenario, this
cost structure might arise because the cost of administering a professional development survey introdu-
ces fixed additional costs at the school level regardless of how many teachers in that school participate
(e.g., costs associated with a school-wide survey administrator). The cost of sampling a school under
an unconditional design was c2 and the cost of sampling each school when collecting a covariate was
k2c2, where k2 was a cost inflation factor. Under this situation, the total cost of a study with a covariate
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would be

CD c3n3 C k2c2n3n2 C c1n3n2n1: (18)

For the third scenario, we retained the above cost structures but considered the relative efficiency of
collecting two different covariates. Specifically, we explored when and to what extent designs that use
covariance adjustment on an economical covariate with lower explanatory power outperform designs
that use a more costly covariate with higher explanatory power. For instance, this scenario might arise
when we have a choice between collecting a covariate that can be measured easily through a survey
(e.g., teacher certification status) and collecting a covariate that takes considerably more effort and cost
(e.g., pre-test) but is likely to have a higher correlation with the outcome.

To identify covariate cost inflation thresholds under this example, we assumed the default cost
structure (expression 12) applied to the economical covariate with lower explanatory power (e.g.,
teacher certification status) and the modified cost structure (expression 17 or 18) applied to the more
costly covariate with higher explanatory power (e.g., pre-test). Like the previous scenarios, we defined
the covariate cost inflation threshold as the inflation factor for which the minimum detectable effect
size for the economical covariate design is equal to that of the costly covariate design.

Minimum detectable effect size. As noted earlier, our analyses focused on the minimum detectable
effect sizes to assess the sensitivity of designs (Bloom, 2008). The minimum detectable effect size
describes the smallest possible effect size a design can detect for a given power level and sample size.
To assess the absolute and relative sensitivity of the designs in terms of their minimum detectable effect
sizes, we considered balanced designs with 80% power under a two-tailed test with a type one error rate
of 0.05 (e.g., Hedges & Hedberg, 2007).

For two-level teacher-randomized designs that block on schools and use random school effects, we
estimated minimum detectable effect sizes (MDES) using

MDESDM.n2 ¡ 1/ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r2
n2

C .1¡ r2/.1¡R2
1/

P.1¡ P/n1n2

s
; (19)

where n2 is the number of schools, n1 is the number of teachers within a school, M is a design multi-
plier such that M � ta=2 C t1¡ b, where t is the critical value and a and b are the type one and two
error rates, for a t distribution with n2-1 degrees of freedom, P is the proportion of schools assigned to
treatment, t22 is variance among the school-specific deviations in the overall treatment effect, r2 is the
intraclass correlation coefficient, and R2

1 is the teacher variance explained.
Under the two-level school-randomized design with teachers nested within schools, we estimated

minimum detectable effect sizes using

MDESD M.n2 ¡ 2¡ p2/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P.1¡ P/

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2.1¡R2

2/

n2
C .1¡ r2/.1¡R2

1/

n1n2

s
; (20)

with p2 as the number of level two covariates and R2
2 as the variance explained at level two.

Under the three-level district-randomized design with teachers nested within schools nested within
districts, we estimated minimum detectable effect sizes using

MDESD M.n3 ¡ 2¡ p3/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P.1¡ P/

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3.1¡R2

3/

n3
C r2.1¡R2

2/

n2n3
C .1¡ r2 ¡ r3/.1¡R2

1/

n1n2n3

s
; (21)

where n3 is the number of districts, n2 is the number of schools within a district, n1 is the number of
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teachers within a school, r2 and r3 are the proportions of total variance attributable to levels two and
three, respectively, and R2

3 as the variance explained at the district level. Remaining notation follows
from previous formulas.

For three-level school-randomized designs that block on district and use random district effects, we
estimated minimum detectable effect sizes using (with similar notation).

MDESDM.n3 ¡ 1/ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3r3
n3

C r2.1¡R2
2/

P.1¡P/n2n3
C .1¡ r2 ¡ r3/.1¡R2

1/

P.1¡ P/n1n2n3

s
: (22)

Results

The results are divided into two sections that align with the research questions and methods. In the first
section, we summarized the empirical estimates of the design parameters from our sample for each
outcome using the two- and three-level models. The second section then surveys the use of these esti-
mates to inform and improve the design of professional development studies.

Empirical estimates

The variance decompositions for the two- and three-level models suggested substantial clustering
among teachers both within schools and within districts (Table 2). Two-level variance decompositions
using teachers nested within schools (ignoring districts) indicated that the variance attributable to dif-
ferences among schools ranged from a low of 0.17 in the middle school number concepts and opera-
tions outcome to a high of 0.33 in the elementary geometry outcome (Table 2). Three-level variance
decompositions with teachers nested within schools nested within districts indicated that the variance
attributable to (a) schools ranged from a low of 0.03 in the elementary school number concepts and
operations outcome to a high of 0.21 in the elementary geometry outcome and (b) districts ranged
from a low of 0.11 in the elementary school geometry outcome to a high of 0.18 in the elementary
school patterns, functions, and algebra outcome (Table 2).

Table 2. Two-level (teachers nested within schools) and three-level (teachers nested within schools nested within districts) uncondi-
tional intraclass correlation coefficients (ICC) and their confidence intervals by outcome.

Outcome ICC Low High

Two-level (schools)
Grades 4–8 geometry .33 .27 .37
Elementary school number concepts and operations .19 .16 .21
Elementary school patterns, functions, and algebra .29 .25 .32
Middle school number concepts and operations .17 .11 .22
Middle school patterns, functions, and algebra .27 .24 .30

Three-level (schools)
Grades 4–8 geometry .21 .15 .25
Elementary school number concepts and operations .03 .01 .05
Elementary school patterns, functions, and algebra .05 .02 .07
Middle school number concepts and operations .03 .00 .09
Middle school patterns, functions, and algebra .14 .10 .17

Three-level (districts)
Grades 4–8 geometry .11 .03 .17
elementary school number concepts and operations .13 .10 .16
Elementary school patterns, functions, and algebra .18 .13 .22
Middle school number concepts and operations .13 .07 .17
Middle school patterns, functions, and algebra .13 .09 .16

Notes. ICC is intraclass correlation coefficient. Low refers to the lower bound of the 95% bootstrapped confidence interval; high refers
to the upper bound of the 95% bootstrapped confidence interval.
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Subsequent analyses suggested that a moderate proportion of the variance was accounted for by
teachers’ prior abilities and, to a lesser extent, teacher certification and teachers’ experience (Table 3).
More specifically, the prognostic value of the pre-test was generally small at the teacher and district lev-
els and moderate at the school level. On average the correlation between the pre- and post-test at the
two level was 0.5. However, this correlation varied considerably across outcomes. For instance,
although prior ability accounted for as much as 60% of the school-level variance in middle school num-
ber concepts and operations, it accounted for just over 20% of the school-level variance in elementary
school number concepts and operations. The explanatory value of teacher certification status was also
inconsistent across levels and outcomes but explained about two-thirds less variance than the pre-test.
Similarly, teacher experience explained virtually no variance.

Assessing design implications

Having assembled initial empirical estimates of the parameters needed to design multilevel studies of
professional development, we next illustrate how to use these estimates to evaluate and compare the
sensitivity of the proposed designs under particular conditions. Although each of the designs consid-
ered draws on the multilevel structure of schooling as a primary design consideration, the scope of
inference varies across designs. For instance, multisite or blocked designs incorporate consideration of
treatment effect variability across hierarchical units whereas this parameter is absent from cluster-ran-
domized designs. Because our investigation of relative sensitivity involves designs with different scopes
of inference, the sampling scheme that produces the most efficient (minimum error variance) estimate
may differ across designs. To facilitate comparisons across designs, we used the minimum detectable
effect sizes under the optimal sample allocations particular to each design.

To make the comparisons in our illustration more concrete, we adopted a fixed cost structure that
was similar to structures previously published in the literature concerning the design of multilevel stud-
ies (Hedges & Borenstein, 2014; Raudenbush, 1997; Raudenbush & Liu, 2000). In particular, we
assumed the following cost structure: total cost available for study (C) D 1000, cost per teacher (c1) D
1, cost per school (c2) D 5c1, and cost per district (c3) D 5c2 and (when relevant) the ratio of variance
of the treatment effect across sites to the variance of the site means (v) was 0.05. Using the estimated
intraclass correlation coefficients and the implied optimal sample sizes, the corresponding minimum
detectable effect sizes for unconditional designs are presented in Table 4. We again note that the results
are illustrative and specific to our assumed cost structure and parameter values and do not necessarily
generalize to alternative assumptions. Adjustments for different cost structures should be made in
investigating the tradeoffs associated with a particular study.

Table 3. Proportion of variance explained by covariate for each outcome by level for two- and three-level specifications.

Pre-test Certification Experience

Outcomes Teacher School District Teacher School District Teacher School District

Two-level
EG .09 .25 — .00 .19 — .00 .00 —
ESNCO .05 .21 — .00 .04 — .00 .00 —
ESPFA .03 .14 — .00 .05 — .00 .01 —
MSNCO .09 .24 — .02 .01 — .00 .00 —
MSPFA .06 .36 — .01 .10 — .01 .01 —

Three-level
EG .09 .32 .08 .00 .08 .38 .00 .01 .00
ESNCO .05 .21 .16 .00 .01 .04 .00 .00 .00
ESPFA .03 .11 .10 .00 .02 .07 .00 .00 .03
MSNCO .09 .60 .22 .02 .00 .06 .00 .26 .01
MSPFA .06 .46 .23 .01 .20 .00 .01 .00 .03

Notes. ESNCO: elementary school number concepts and operations; ESPFA: elementary school patterns, functions, and algebra; EG: ele-
mentary geometry; MSNCO: middle school number concepts and operations; and MSPFA: middle school patterns, functions, and
algebra. R2 is the proportion of variation explained.
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In contrasting the minimum detectable effect sizes across designs, the results demonstrated consis-
tent and substantial differences across all outcomes (Table 4). Perhaps the most notable result was the
well-established pattern of the lower the unit of assignment, the more sensitive the design. This result
was expected (Raudenbush, 1997). For instance, designs that assigned treatments to teachers had
smaller minimum detectable effect sizes than designs that assigned treatments to schools or districts.
Across all outcomes, the average minimum detectable effect sizes (in rank order) were two-level
teacher-randomized within school blocks (A): 0.22; the three-level school-randomized within district
blocks design assuming no effect variability (B): 0.32; the two-level school-randomized design (C):
0.36; the three-level school-randomized within district blocks design assuming effect variability (D):
0.50; and the three-level district-randomized design (E): 0.62.

Next, we examined the absolute and relative sensitivity of the designs under covariance adjustment.
Table 5 presents the minimum detectable effect size results but omits the optimal sample sizes because

Table 4. Minimum detectable effect sizes for five unconditional designs using the optimal sample sizes for the example cost structure.

Sample Sizes by Design
Minimum Detectable
Effect Sizes by Design

Outcome Unit A E B D C A E B D C

Grade 4–8 geometry Teachers 20 4 3 4 4 0.21 0.38 0.38 0.63 0.66
Schools 40 20 122 20 3
Districts — 5 — 5 19

Elementary school number
concepts and operations

Teachers 29 12 5 12 12 0.22 0.28 0.34 0.44 0.58
Schools 29 7 104 7 1
Districts — 7 — 7 23

Elementary school patterns,
functions and algebra

Teachers 22 9 3 9 9 0.21 0.31 0.37 0.45 0.65
Schools 37 7 118 7 1
Districts — 8 — 8 24

Middle school number concepts
and operations

Teachers 31 12 5 12 12 0.23 0.28 0.33 0.44 0.58
Schools 28 7 101 7 1
Districts — 7 — 7 23

Middle school patterns, functions
and algebra

Teachers 23 5 4 5 5 0.21 0.35 0.36 0.56 0.65
Schools 35 15 115 15 2
Districts — 6 — 6 21

Notes. The minimum detectable effect size under the teacher-randomized design that ignores school and districts using the sample
sizes associated with design A was between 0.18 and 0.19, depending on outcome. Cost structure: C D 1000, c1 D 1, c2 D 5c1, c3 D
5c2.vD 0.05.

A: two-level teacher-randomized designs that block on schools
B: two-level school-randomized designs
C: three-level district-randomized designs
D: three-level school-randomized designs that block on districts (random district effects)
E: three-level school-randomized designs that block on districts (fixed district effects)

Table 5. Minimum detectable effect sizes for five conditional designs using the optimal sample sizes for the example cost structure.

Pre-test Certificate

Outcome A E B D C A E B D C

Grades 4–8 Geometry 0.20 0.33 0.34 0.60 0.61 0.21 0.37 0.35 0.69 0.59
Elementary school number concepts and operations 0.22 0.27 0.31 0.44 0.54 0.22 0.28 0.33 0.46 0.57
Elementary school patterns, functions, and algebra 0.21 0.30 0.35 0.46 0.62 0.21 0.31 0.36 0.47 0.64
Middle school number concepts and operations 0.22 0.25 0.30 0.40 0.50 0.22 0.28 0.33 0.46 0.57
Middle school patterns, functions, and algebra 0.21 0.30 0.31 0.51 0.57 0.21 0.33 0.35 0.57 0.64

Notes. Cost structure: C D 1000, c1 D 1, c2 D 5c1, c3 D 5c2.vD 0.05.
A: two-level teacher-randomized designs that block on schools
B: two-level school-randomized designs
C: three-level district-randomized designs
D: three-level school-randomized designs that block on districts (random district effects)
E: three-level school-randomized designs that block on districts (fixed district effects)
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they were very similar to the unconditional optimal sample sizes (Table 4). The minimum detectable
effect size associated with designs that use covariance adjustment preserved the rank ordering of the
unconditional designs. The advantage of adjusting on the pre-test or certification varied by design;
however, overall the value was modest. On average, adjusting for the pre-test lowered the minimum
detectable effect size between 1% and 10%.

Finally, we investigated the relative sensitivity of the designs to additional covariate costs through
the covariate cost inflation threshold strategy described above. Results across the three aforementioned
scenarios and five outcomes were qualitatively similar. As a result, we limit our illustration to the first
scenario (increased teacher costs) using the geometry outcome. As in previous examples, because the
results are subject to the assumed cost structure and parameter estimates, the example is meant to pro-
vide an illustration of the proposed strategy and should not be generalized to alternative sets of
assumptions.

We continued with the previous cost structure but assumed that the increased cost for collecting a
covariate only impacted the cost of sampling teachers. We present the results under the empirical esti-
mates of the intraclass correlation coefficients and variance explained and the corresponding optimal
sample sizes in Figure 1. For each design, we plotted the minimum detectable effect sizes for uncondi-
tional, certification adjusted, and pre-test-adjusted specifications.

Across all designs, we saw that the covariate cost-inflation-factor threshold ranged from about 1.1 to
2 (three-level district-randomized design) with an average of about 1.5; that is, the net improvement in
the minimum detectable effect size offered by a pre-test or certification covariate was usually overtaken
by the cost of collecting the covariates once the per-teacher cost increased by about 50%. For instance,
under the two-level school-randomized design (B), the covariate cost inflation threshold was approxi-
mately 1.4 and 1.7 for the certification and pre-test specifications. Put differently, if collecting a certifi-
cation/pre-test covariate increased per-teacher costs by 40% to 70%, the unconditional design is likely
to be more sensitive given a fixed budget (Figure 1).

Figure 1. Minimum detectable effect size as a function of teacher-level covariate cost inflation factor for grades 4–8 geometry (relative
to unconditional design).
Note. A: two-level teacher-randomized designs that block on schools.
B: two-level school-randomized designs.
C: three-level district-randomized designs.
D: three-level school-randomized designs that block on districts (random district effects).
E: three-level school-randomized designs that block on districts (fixed district effects).
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Discussion

A critical consideration in the design of contemporary professional development studies is clarifying
the types of designs that are amenable to the collaborative structure of many programs in order to pro-
vide a careful mapping of theories of action onto study designs. The objective of this study was to
explore the alignment of several cluster-based designs and investigate the feasibility of these designs for
studying professional development programs. In what follows, we synthesize the implications and
issues that arise from the results, discuss limitations, and conclude with preliminary recommendations.

Implications

Broadly, the results have potentially important implications for designing studies of professional devel-
opment. Perhaps the most prominent implication concerns the likely scale of data collection necessary
to yield well-powered designs. For instance, to reach conventional power levels (i.e., 0.80), clustered
designs will often need almost double the number of schools as compared to teacher-randomized
designs. The collective results suggested that clustered designs will typically necessitate large sample
sizes or anticipate large effects in order to provide sufficiently precise estimates of the effects. This find-
ing has significant implications for researchers but also for the larger teacher professional development
field because it suggests that experimental professional development studies will require more resour-
ces than are commonly available in current funding streams.

More specifically, typical educational experiments with student outcomes tend to sample about 50
schools (Schochet, 2011). In many cases, this school-level sample size provides a sufficient level of pre-
cision because, in part, researchers leverage two important design features. The first is conditioning on
covariates that are highly predictive of student outcomes. The results of our study suggested that this
strategy may be more limited in professional development studies because even the typically most pre-
dictive covariate, the pre-test, demonstrated fairly modest correlations with the outcome. Second, the
accompanying student-level sample sizes in typical educational experiments are usually large enough
(e.g., 20) to substantially reduce the residual contribution of the student-level error variance (i.e., the
student-level variance component that adds to the uncertainty in the cluster means, s2

1=n1) to the stan-
dard error of the estimated treatment effect. In contrast, because teacher-level sample sizes per school
in professional development studies are likely to be significantly smaller, these same designs (i.e., 50
schools) will typically be underpowered.

Several practical design strategies are implicated by the necessary scale of these studies. One route is
to find alternative prognostic covariates. However, research has found it difficult to predict teacher
knowledge and effectiveness and so even this route may prove to be limited (e.g., MET, 2012). Another
route is for the field to reserve clustered experimental designs for only those professional development
programs that have shown significant promise, extensive field testing, and relatively homogeneous
effects across clusters. Alternatively, clustered experimental designs may also be earmarked for only
those programs that have demonstrated large effect sizes.

Lastly, the results suggest that one ostensible route to designing a well-powered experimental assess-
ment of professional development programs is to use teacher-randomized designs. However, although
the sensitivity of a design to detect an effect is an important consideration, in many instances the col-
laborative nature of a professional development program will supplant this consideration. In this way,
the preference for teacher-randomized designs is more qualified. If the program under study excludes
collaboration, the most sensitive design is likely to be a teacher-randomized design. However, if the
program includes collaboration as a major component, it is likely that teacher-randomized designs will
be unsuitable on theoretical grounds.

More technically, the results within and across designs and outcomes suggested that the unit of ran-
domization played a much larger role in determining design sensitivity than covariance adjustment or
blocking. For instance, the minimum detectable effect size for the district-randomized design (C) was
typically three times larger than that of the teacher-randomized design (A). By comparison, the uncon-
ditional specifications under those designs presented minimum detectable effect sizes that were only
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about 2%–9% larger than those under the covariance adjustment on the pre-test specification. This
result reiterates the well-known result that cluster-randomized designs lack statistical precision when
compared to individually randomized designs. At the same time, the results quantify the general mag-
nitude of the loss of precision originating from the clustering, prognostic value of covariates, and
teacher-level sample sizes.

Blocking played a less influential but more complex and two-dimensional role in shaping the sensi-
tivity of a design. Blocking on schools/districts was a moderately effective strategy for improving design
sensitivity, but its contribution was substantially moderated by assumptions concerning effect variability.
More specifically, the variance eliminated by blocking across outcomes was moderate, averaging 0.25 for
the unconditional teacher-randomized within school blocks design (A) and 0.14 for the school-random-
ized within district blocks designs (D and E). Ostensibly, this reduction in outcome variance should
improve the overall sensitivity of a design. However, as previously described, blocked designs potentially
introduce additional variance arising from treatment effect variability. The net result is that the reduc-
tion in outcome variance supplied by blocking can be offset by variation in the effect.

The impact of the dual and contrasting contributions of blocking to design sensitivity is apparent in
our worked example (see Table 4). Take for instance the minimum detectable effect sizes of the school-
randomized design (B), which ignores districts, and the school-randomized within district blocks designs
(D and E). Across all outcomes, the average minimum detectable effect size of the school-randomized
design (B) was 0.36. Advancing this design by blocking on districts and assuming no effect size variabil-
ity (design E), the average minimum detectable effect size fell to 0.32. By contrast, blocking on districts
but allowing effects to differ across districts (design D) raised the minimum detectable effect size to
0.50. In this way, the expanded inference space associated with blocking introduced important tradeoffs
concerning the scope of a research study, the intended inference, and design sensitivity.

Covariance adjustment on the selected covariates also modestly improved design sensitivity, but
varied by design. Because the mechanisms through which covariance adjustment operate (reducing
unexplained variance in the outcome) overlap with those of blocking, the unique contribution of
covariance adjustment in terms of improving design sensitivity was tempered by the choice of design.
For instance, because blocking on schools in the teacher-randomized design (A) with the geometry
outcome eliminates the proportion of outcome variance attributable to districts, adjusting for the
covariance between the geometry post- and pre-test provides an additional 9% reduction in variance at
the teacher level but supplies no additional reduction at the school level. The additional gains in effi-
ciency due to covariance adjustment are often limited by blocking.

Limitations

We note several limitations in our study. A first limitation is the generalizability of our sample of teach-
ers, schools, and districts. The sample was drawn from teachers, schools, and districts that participated
in professional development programs that required an evaluation instrument. Teachers, schools, and
districts in the sample likely do not represent the full range of teachers, schools, and districts nationally
or the range of those that might participate in professional development. Although this limitation is
real, it is important to recognize that samples used to estimate empirical values of design parameters
rarely are representative of the samples for a particular study. For instance, even estimates from a
nationally representative sample may not be directly applicable to studies using more localized samples
for which most studies are conducted (Hedges & Hedberg, 2013). As with all estimates, researchers
need to consider carefully to what extent the teacher, school, and district samples upon which the
parameters were estimated is applicable to their study sample and be cautious in applying parameter
estimates from different subpopulations.

The scope of our analyses was limited to teacher knowledge outcomes. For many studies, there may
be other important outcomes. A large portion of professional development programs are designed to
enhance teacher knowledge and skills, which in turn is thought to improve classroom teaching and
effect gains in student achievement (Yoon et al., 2007). If a teacher fails to acquire new ideas, skills,
and knowledge from professional development, it is unlikely that she or he will be able to adapt
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classroom instruction and improve student achievement (Yoon et al., 2007). Although it is important
that future studies consider other professional development outcome variables, recognize that these
variables may also have practical and theoretical limitations. Practically, outcomes such as classroom
instruction or value-added scores have been shown to be less reliable (MET, 2012) and thus tend to
offer decreased sensitivity for effects. Theoretically, because teacher knowledge often represents a criti-
cal mediator, neglecting it may lead to unclear findings (e.g., theory versus implementation failure)
and ultimately limit a study’s contribution to our understanding of teacher development (e.g., Rossi,
Lipsey, & Freeman, 2004).

Similarly, even within the scope of teacher knowledge, the content of a professional development
program may be much more targeted than the types of knowledge measured by the mathematical
knowledge for teaching measures (e.g., Kennedy, 2016). Alternative knowledge outcomes that are
much more targeted to the specific types of knowledge delivered in a specific professional development
program may also serve to modify the results. For instance, the observed pre-test–post-test correlations
may change in important ways that were not captured here.

Further, our analyses of the estimates considered only a very narrow range of parameter values,
assumptions, and plausible designs. For instance, our analyses were limited in terms of cost structures;
assumptions about the availability teachers, schools, and districts; and assumptions about effect size
variability. As previously noted, our examples were intended to illustrate the use and comparative anal-
ysis of designs rather than to comprehensively examine all possible options. Within the context of
planning a professional development study, it is important that empirically supported assumptions be
made. For instance, in many cases the sample sizes we adopted may be infeasible due to the availability
of teachers, schools, and districts. In such cases, one might consider conditional optimal design such
that optimal allocations are determined under various fixed sampling constraints (Hedges & Boren-
stein, 2014).

The limitations presented by the sample, outcomes, and remaining assumptions are particularly rel-
evant for researchers considering using our results to design subsequent studies of professional devel-
opment. As evidenced by the variability in intraclass correlations and variance explained across
outcomes (Jacob, Zhu, & Bloom, 2010), estimates of these parameters can be sensitive to the selected
sample and outcomes. Similarly, the results comparing designs are sensitive to these and the additional
assumptions. We caution readers to carefully consider potential differences between our analyses and
those focused on a given study. Our analyses should be used as an outline of potential considerations
rather than a specific blueprint or set of rules for designing professional development studies.

Conclusion

The analyses we have presented provide initial empirical estimates of the parameters needed to
design multilevel studies of professional development studies and illustrate the potential of the
tradeoffs associated with planning these studies. Clearly, teacher-randomized designs offer the
most efficient design. However, for many professional development programs, randomizing at
the teacher level will require assigning some teachers to a nontreatment control group. This in
turn could serve to undermine the theory of the program by reducing collaboration within
schools or districts. Ultimately, the efficiency realized by teacher-randomized designs needs to be
weighed against consideration of the threat of study designs that are poorly aligned with the pro-
gram theory. Collectively, the results suggest a provisional strategy that can be applied in plan-
ning professional development studies. A first step might be to identify which units one could
sensibly randomize and to evaluate the extent to which randomizing at each level represents a
threat to the theory of the professional development program. Once the unit of assignment is
outlined and evaluated, a next step is to consider the feasibility of blocking. Considerations
include the expectations concerning effect variability and the availability and relative cost of
teachers, schools, and districts. As a third step, one should consider the accessibility, cost, and
prognostic value of covariates and the extent to which their value overlaps with that of blocking.
With the careful and appropriate use of these results, we anticipate that the work will inform the
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design of professional development studies and serve as an initial rough guide for delineating
empirical and theoretical design considerations for studies of professional development.
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Appendix

Example Learning Mathematics for Teaching Assessment Question

Which of the following story problems can be used to represent 1 1=4 divided by
1/2?

Yes No

a. You want to split 11=4 pies evenly between two families. How much should each family get? 1 2
b. You have $1.25 and may soon double your money, How much money would you end up with? 1 2
c. You are making some homemade taffy and the recipe calls for 1 1=4 cups of butter. How many sticks of
butter will you need? (each stick D 1/2 cup)

1 2

Note: The example LMT question is taken from Ball, Thames, and Phelps (2008). The following explanations are given for the correct
answers. “The first word problem is division by 2 rather than by 1/2; the second is multiplication by 2 rather than by 1/2 (a subtle yet
important point for teaching this content); and the third correctly fits the calculation—using a measurement meaning of division.
The important point here, though, is that figuring out which story problems fit with which calculations, and vice versa, is a task
engaged in teaching this content, not something done in the solving problems with this content” (p. 400).
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