
Sadhana Puntambekar, Jee-Seon Kim, Sharon Derry, N. Hari Narayanan

Goals and Objectives
• Help students understand central ideas and conceptual relationships in science
• Foster students’ science understanding by engaging them in science and engineering practices and helping them to explore technological content to solve 21st century problems
• Implement units in rural and underserved areas

Biology Content Units
1. Make Your Own Compost!
• Reducing waste in landfills
• Energy transfer in ecosystems

2. Grow Healthy Plants!
• Sustainable agriculture
• Genetics and environmental impacts

Classroom Studies
Make Your Own Compost!
- 437 8th grade students in Wisconsin
- 96 7th grade students in North Carolina

Grow Healthy Plants!
- 207 7th grade students in Wisconsin
- 2 school districts

Results: Growing Healthy Plants!

Data Sources
Pre and post science knowledge tests
• 26 questions for GHP, 31 questions for Compost
• Memory, Understanding, and Application questions

Science practices test
• 21 total questions
• Student’s science journals
• Classroom audio and video

Results: Make Your Own Compost!

Results: Science Practices Test

Students’ Science Practices Pre – Post Sample Responses

Question: “How do scientists convince other people about their explanations for why things happen the way they do in the world around us? Explain your answer in as much detail as you can.”

<table>
<thead>
<tr>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>“They tell us so we know what to expect.”</td>
<td>“Scientists convince others by having other scientists try out the experiment. The cycle continues, the retry, retry, retry, and retry over and over again to see if the data is correct. Then, the science community releases information to the public about the discoveries.”</td>
</tr>
<tr>
<td>“They give facts about their experiments.”</td>
<td>“Scientists show results from their experiments to convince other people about their explanations for why things happen the way they do. The more results they have the more people are going to believe them.”</td>
</tr>
</tbody>
</table>

Scaffolding Students’ Learning

Epistemic Scaffolds for Learning from VidyaMap
• Examined the effect of epistemic reflection prompts on students’ biology learning from VidyaMap
• Two classes given prompts for epistemic reflection, to encourage students to reflect on the epistemic role of VidyaMap
• ANCOVA results showed that students who received the prompts outperformed the comparison classes in their learning
• Positive correlation was found between students’ levels of epistemic reflection and their science learning with VidyaMap
• Students with high epistemic reflection scores used VidyaMap as an epistemic tool
• Students with low epistemic reflection scores used VidyaMap to find information without using its epistemic features

Teachers’ Role in Learning from Simulations and Physical Models
• Explored the mediating role that teachers play in helping students utilize multiple models
• Analyzed discourse from two teachers’ classes to examine how they discussed the affordances of models
• We found significantly more discussion of the affordances and constraints of models in Teacher A’s classes, while Teacher B focused more on discussing science content
• Teacher A’s students used the affordances of the models to purposely engage in scientific thinking
• “Teachers talk about the affordances of different types of models seems to be important to support students’ purposeful use of multiple models

Pretest > Posttest for multiple-choice, open-ended, and total score

Pretest – Posttest by Teacher

Mean Scores for Pretest and Posttest by Teacher

GHP Question Categories

Compost Question Categories

Application (Effect size (Cohen’s d): Memory (.733); Understanding (.652); Pre and post science knowledge tests

<table>
<thead>
<tr>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>“They tell us so we know what to expect.”</td>
<td>“Scientists convince others by having other scientists try out the experiment. The cycle continues, the retry, retry, retry, and retry over and over again to see if the data is correct. Then, the science community releases information to the public about the discoveries.”</td>
</tr>
<tr>
<td>“They give facts about their experiments.”</td>
<td>“Scientists show results from their experiments to convince other people about their explanations for why things happen the way they do. The more results they have the more people are going to believe them.”</td>
</tr>
</tbody>
</table>

Significant difference in pre-post scores (p < .0001)

Significant improvement for all three question categories (p < .0001)

Significant improvement for all three question categories (p < .0001)

Scaffolding Students’ Learning

Epistemic Scaffolds for Learning from VidyaMap
• Examined the effect of epistemic reflection prompts on students’ biology learning from VidyaMap
• Two classes given prompts for epistemic reflection, to encourage students to reflect on the epistemic role of VidyaMap
• ANCOVA results showed that students who received the prompts outperformed the comparison classes in their learning
• Positive correlation was found between students’ levels of epistemic reflection and their science learning with VidyaMap
• Students with high epistemic reflection scores used VidyaMap as an epistemic tool
• Students with low epistemic reflection scores used VidyaMap to find information without using its epistemic features

Teachers’ Role in Learning from Simulations and Physical Models
• Explored the mediating role that teachers play in helping students utilize multiple models
• Analyzed discourse from two teachers’ classes to examine how they discussed the affordances of models
• We found significantly more discussion of the affordances and constraints of models in Teacher A’s classes, while Teacher B focused more on discussing science content
• Teacher A’s students used the affordances of the models to purposely engage in scientific thinking
• “Teachers talk about the affordances of different types of models seems to be important to support students’ purposeful use of multiple models

Significant difference in pre-post scores (p < .0001)