Teachers

Supporting Instructional Growth in Mathematics: Enhancing Urban Secondary Teachers' Professional Learning through Formative Feedback

This project will explore the potential of video-based formative feedback to enhance professional development around ambitious instruction for secondary teachers in urban schools.

Lead Organization(s): 
Award Number: 
1620920
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

Research continues to show the benefits of ambitious instruction for student learning of mathematics, yet ambitious instruction continues to be rare in U.S. schools, particularly in schools that serve historically marginalized students. Secondary teachers' learning and enactment of ambitious instruction in mathematics requires conceptual change, and their development could benefit from adequate and timely feedback close to classroom instruction. For this reason, the project will explore the potential of video-based formative feedback to enhance professional development. The focus of the partnership between university researchers and a well-regarded professional development organization, Math for America Los Angeles (MfA LA) will be on career-long learning of secondary mathematics teachers in urban schools. Results from this project will provide a theory of mathematics teachers' learning that can inform other instructional improvement efforts, with ecological validity in the critical site of urban schools. The framework and theory will be detailed at the level of specific tools and concrete practices that are learnable by teachers, school leaders, or instructional coaches. This project is funded by the Discovery Research Pre-K-12 Program, which funds research and development of STEM innovations and approaches in assessment, teaching and learning.

The question the project will address is: How can the project use formative feedback to enhance mathematics teachers' professional learning environments that support their development of ambitious instruction in urban schools? Formative feedback refers to tools and processes that ascertain teachers' current understandings and responsively adapt learning activities to better guide them toward their learning goals. Professional learning environments refer to the multiple sites of teachers' learning, from formal professional development activities to their school workplace. Ambitious instruction is defined as teaching approaches that aim to provide all students with ample opportunities to develop conceptual understanding of key mathematical ideas, participate in mathematical argumentation, connect multiple mathematical representations, as well as become fluent with mathematical procedures and processes. The persistence of typical mathematics instruction is framed as, in large part, an issue of teacher learning. Using design-based implementation research and interpretive methods, the project team will co-develop video-based formative assessment processes to guide teachers' evolving classroom practice.

Synchronous Online Professional Learning Experiences for Middle Grades Mathematics Teachers in Rural Contexts

This project will develop and implement an innovative online mathematics professional development model designed to provide growth opportunities for teachers in rural districts who normally lack access to such opportunities. The project will focus on developing teacher capacity to enact ambitious, responsive instruction aligned with the Common Core State Standards for Mathematics (CCSSM), and thus will be sustained, interactive, and of sufficient duration to help teachers transform their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1620911
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

All teachers need access to high quality professional development in order to meet the needs of students and teach mathematics as outlined in college and career-ready standards. Online professional development has the potential to expand access to under-resourced areas, including urban districts, and teachers who wish to participate in communities of inquiry but do not have local access to such communities. Building on research on effective face-to-face professional development, including research from the emerging fields of content-focused coaching and video coaching, this project will design and study professional development for middle grades mathematics teachers in rural communities. As schools turn to digital learning contexts, it is inevitable that professional development will follow a similar trend. It is imperative to have research-based models that demonstrate how the features of high-quality face-to-face professional development can be matched or augmented in online contexts. The study has the potential to contribute to research on professional development, especially in the growing areas of online professional development and coaching, and will build from and contribute to the literature on the impact of multiple modalities and synchronicities in online contexts. The project will address the critical need for models of professional development for teachers in rural areas, which has a limited research base. This project is funded by the Discovery Research PreK-12 (DRK-12) Program. The DRK-12 program supports research and development on STEM education innovations and approaches to teaching, learning, and assessment.

The project will develop and implement an innovative online mathematics professional development model designed to provide growth opportunities for teachers in rural districts who normally lack access to such opportunities. The study will take place in two geographically disparate locations in order to research the effectiveness of the model across contexts and to explore the resources and constraints involved in scaling up the model. The project will focus on developing teacher capacity to enact ambitious, responsive instruction aligned with the Common Core State Standards for Mathematics (CCSSM), and thus will be sustained, interactive, and of sufficient duration to help teachers transform their practices. In the design of the professional development, the project will leverage features of emerging technologies that are multimodal and involve a mix of synchronous/ asynchronous communication. The most innovative feature is the online video coaching in which a teacher and coach separately will view and notate video of the teacher's enactment of a collaboratively planned lesson as a precursor to the online post-lesson debriefing. Building from design-based research principles, the project will incorporate iterative cycles of data collection, analysis, reflection, and revision that will explore the effectiveness of the model and inform revisions.

Connected Biology: Three-Dimensional Learning from Molecules to Populations (Collaborative Research: Reichsman)

This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.

Lead Organization(s): 
Award Number: 
1620910
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

This project will contribute to this mission by designing, developing, and examining the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection. These traditionally separate topics will be interlinked and will be designed to engage students in the disciplinary core ideas, crosscutting concepts, and the science and engineering practices defined by the NGSS. Once developed, the curriculum materials will be available online for use in high school biology courses nationwide.

This project will be guided by two main research questions: 1) How does learning progress when students experience a set of coherent biology learning materials that employ the principles of three-dimensional learning?; and 2) How do students' abilities to transfer understanding about the relationships between molecules, cells, organisms, and evolution change over time and from one biological phenomenon to another? The project will follow an iterative development plan involving cycles of designing, developing, testing and refining elements of the new curricular model. The project team will work with master teachers to design learning sequences that use six case studies to provide examples of how genetic and evolutionary processes are interlinked. An online data exploration environment will extend learning by enabling students to simulate phenomena being studied and explore data from multiple experimental trials as they seek patterns and construct cause-and-effect explanations of phenomena. Student learning will be measured using a variety of assessment tools, including multiple-choice assessment of student understanding, surveys, classroom observations and interviews, and embedded assessments and log files from the online learning environment.

An Online STEM Career Exploration and Readiness Environment for Opportunity Youth

This project aims to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM) that will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways.

Award Number: 
1620904
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

CAST, the University of Massachusetts-Amherst, and YouthBuild USA aim to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM). This will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways. The program will provide opportunity youth with a personalized and portable tool to explore STEM careers, demonstrate their STEM learning, reflect on STEM career interests, and take actions to move ahead with STEM career pathways of interest.

The proposed program addresses two critical and interrelated aspects of STEM learning for opportunity youth: the development of STEM foundational knowledge; and STEM engagement, readiness and career pathways. These aspects of STEM learning are addressed through an integrated program model that includes classroom STEM instruction; hands-on job training in career pathways including green construction, health care, and technology.

Improving the Implementation of Rigorous Instructional Materials in Middle Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Ahn)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1719744
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

This project was previously funded under award # 1620900.

Developing Formative Assessment Tools and Routines for Additive Reasoning

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. The project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses.

Lead Organization(s): 
Award Number: 
1620888
Funding Period: 
Thu, 09/01/2016 to Thu, 02/28/2019
Full Description: 

This design and development project is an expansion of the Ongoing Assessment Project (OGAP), an established model for research-based formative assessment in grades 3-8, to the early elementary grades. OGAP brings together two powerful ideas in mathematics education - formative assessment and research based learning trajectories - to enhance teacher knowledge, instructional practices, and student learning. Building on a proven track record of success with this model, the current project will translate findings from research on student learning of early number, addition, and subtraction into tools and routines that teachers can use to formatively assess their students' understanding on a regular basis and develop targeted instructional responses. The project involves a development component focused on producing and field testing new resources (including frameworks, item banks, pre-assessments and professional development materials) and a research component designed to improve the implementation of these resources in school settings. The materials that are developed from this project will help teachers be able to more precisely assess student understanding in the major mathematical work of grades K-2 in order to better meet the needs of diverse learners. With the addition of these new early elementary materials, OGAP formative assessment resources will be available for use from kindergarten through grade 8.

Although much attention has been paid to the improvement of early literacy, building strong mathematical foundations and early computational fluency is equally critical for later success in school and preparation for STEM careers. This project will develop and field test tools, resources, and routines that teachers can employ to help young students develop deeper conceptual understandings and more powerful and efficient strategies in the early grades. The project emerged from the needs of school-based practitioners looking for instructional support in the primary grades and uses design-based research methodology. The new materials will be developed, tested, and revised through multiple iterations of implementation in schools. Research-based learning trajectories will be consolidated into simplified frameworks that illustrate the overall progression of major levels of student thinking in the domains of counting, addition, and subtraction. A bank of formative assessment items will be developed, field tested, and refined through a three-phase validation process. Professional development modules will be designed and field tested to support teacher knowledge and effective use of the formative assessment tools and routines. Data collected on key activities in the formative assessment process (including teacher selection of items, analysis of student work, instructional implications, and enacted instructional response) will be used to continually inform development as well as illuminate the conditions under which formative assessment leads to productive changes in instruction and student learning in the classroom. The project will yield a set of field tested tools and resources ready for both broader dissemination and further research on the promise of the intervention, as well as an understanding of how to support effective implementation.

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Cobb)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1620863
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Jackson)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1620851
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

Connected Biology: Three-Dimensional Learning from Molecules to Populations (Collaborative Research: White)

This project will design, develop, and examine the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection.

Lead Organization(s): 
Award Number: 
1620746
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

This project will contribute to this mission by designing, developing, and examining the learning outcomes of a new curriculum unit for biology that embodies the conceptual framework of the Next Generation Science Standards (NGSS). The curriculum materials to be developed by this project will focus on two areas of study that are central to the life sciences: genetics and the processes of evolution by natural selection. These traditionally separate topics will be interlinked and will be designed to engage students in the disciplinary core ideas, crosscutting concepts, and the science and engineering practices defined by the NGSS. Once developed, the curriculum materials will be available online for use in high school biology courses nationwide.

This project will be guided by two main research questions: 1) How does learning progress when students experience a set of coherent biology learning materials that employ the principles of three-dimensional learning?; and 2) How do students' abilities to transfer understanding about the relationships between molecules, cells, organisms, and evolution change over time and from one biological phenomenon to another? The project will follow an iterative development plan involving cycles of designing, developing, testing and refining elements of the new curricular model. The project team will work with master teachers to design learning sequences that use six case studies to provide examples of how genetic and evolutionary processes are interlinked. An online data exploration environment will extend learning by enabling students to simulate phenomena being studied and explore data from multiple experimental trials as they seek patterns and construct cause-and-effect explanations of phenomena. Student learning will be measured using a variety of assessment tools, including multiple-choice assessment of student understanding, surveys, classroom observations and interviews, and embedded assessments and log files from the online learning environment.

Developing A Discourse Observation Tool and Online Professional Development to Promote Science, Oral Language and Literacy Development from the Start of School

The goal of this project is to develop a classroom observation tool and an online professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse.

Lead Organization(s): 
Award Number: 
1620580
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The goal of this project is to develop resources and a professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse. A central component of the Next Generation Science Standards (NGSS) is engaging students in discourse with a focus on formulating and communicating scientific explanations. This project will develop a classroom observation tool that will help teachers examine changes in the quantity and quality of science discourse in K-2 classrooms over time. The project will also develop an online professional development (PD) model that uses the new observation tool to help teachers analyze their own classroom practices and the practice of others to improve classroom efforts to foster improved scientific discourse.

This early stage design and development study will employ a Design-Based Implementation Research (DBIR) approach to develop the new classroom observation tool and online professional development model, and then seek answers to the following research questions: 1) How can a classroom observation measure be developed to effectively capture the range in quality of science discourse in early elementary classrooms?; 2) How can an online PD model be developed based on the new observation tool?; 3) How do teachers' knowledge and instructional practice change over the course of participation in the yearlong PD?; and 4) How does the quantity and quality of science discourse change in K-2 classrooms over the course of teachers' participation in a yearlong online PD experience that is built around the new observation tool? The project will engage 36 teachers and their 36 different classrooms in Michigan and use multiple data sources to understand whether and how teacher knowledge and instructional practices change during participation in the new PD model. Multiple iterations of design, data collection, and refinement will be used to understand how, when, and why features of the PD and observation tool might combine to transform science discourse in early elementary classrooms. In years 3 and 4, the project team will conduct two year-long implementation trials with cohorts of 15 teachers and 5 instructional coaches (experienced science teachers) who will use the PD and tool in order study their implementation and make iterative improvements. The project will also gather data to understand changes in teacher knowledge and practice as well as video data to document changes in classroom discourse.

Pages

Subscribe to Teachers