Teachers

Collaborative Math: Creating Sustainable Excellence in Mathematics for Head Start Programs

This project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach.

Lead Organization(s): 
Award Number: 
1503486
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

This project was submitted to the Discovery Research K-12 (DRK-12) program that seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. CM content will focus on nine topics emphasized in preschool mathematics, including sets, number sense, counting, number operations, pattern, measurement, data analysis, spatial relationships, and shape. These concepts are organized around Big Ideas familiar in early math, are developmentally appropriate and foundational to a young child's understanding of mathematics. The project addresses the urgent need for improving early math instruction for low-income children. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach. Likewise, the project will involve teachers, teacher aides, and administrators through a whole school approach in PD, which research has shown is more effective than involving only lead teachers. Through several phases of development and research, the project will investigate the contributions of project components on increases in teacher knowledge and classroom practices, student math knowledge, and overall implementation. The project will impact approximately 200 Head Start (HS) teaching staff, better preparing them to provide quality early math experiences to more than 3,000 HS children during the project period. Upon the completion of the project, a range of well-tested CM materials such as resource books and teaching videos will be widely available for early math PD use. Assessment tools that look at math knowledge, attitudes, and teacher practice will also be available. 

The project builds on Erikson Institute research and development work in fields of early math PD and curriculum. Over a 4-year span, project development and research will be implemented in 4 phases: (1) adapting the existing CM and research measures for HS context; (2) conducting a limited field study of revised CM in terms of fidelity and director, teacher/aide, and student outcomes, and study of business as usual (BAU) comparison groups; (3) a study of the promise of the intervention promise with the phase 3 BAU group (who offered baseline in phase 2) and (4) a test of the 2nd year sustainability intervention with phase 3 treatment group. The teacher and student measures are all published, frequently used measures in early childhood education and will be piloted and refined prior to full implementation. The project is a partnership between Erikson, SRI, and Chicago Head Start programs. Project research and resources will be widely disseminated to policy makers, researchers, and practitioners.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Donovan)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503342
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.

Science Teachers Learning from Lesson Analysis (STeLLA): High School Biology

This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution.

Award Number: 
1503280
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project will develop and test a biology teacher professional model that employs analysis of videotaped lessons to promote increased biology content knowledge and pedagogical content knowledge among practicing biology teachers. The content of the professional development activities will focus on the crosscutting concepts of stability and change that link core ideas in three areas of biology: cell biology, heredity, and evolution. These are content areas that have been shown to be difficult for students to learn, and difficult for teachers to teach. The professional development model will include: a) a summer institute where teachers gain new knowledge and skills in biology and learn to analyze videotaped lessons; b) opportunities to teach project-developed lessons during the academic year; and c) study group sessions during the academic year where participating teachers analyze videoclips of their own teaching.

The project will design, develop, and test a teacher professional development model that is based on a previously developed approach that has been shown to be effective among elementary school teachers. It is hypothesized that the newly developed program will have a positive impact on the science achievement of high school students, that it will improve teacher science content knowledge and classroom practice, and that the effects on student outcomes will be equitable across student demographic variables. To test thee hypotheses, the project will employ a quasi-experimental research approach in which teachers will serve as their own comparison groups in a cohort control design. Hierarchical linear modeling will be used to differentiate the effects of variances in teacher content knowledge and pedagogical content knowledge, student demographic variables, and school factors. It is anticipated that the project will find evidence that the proposed approach to biology teacher professional development has the potential to close the achievement gaps among student populations.

Playing with the Data: Developing Digital Supports for Middle School Science Teachers using Game-based Formative Assessment

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games.

Award Number: 
1503255
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will use cycles of design-based research to build new knowledge about how to facilitate teachers' interpretation and use of digital game-based formative assessment data. The research will also inform the revision and expansion of Playfully, an existing, online data-reporting dashboard that can be used with multiple digital games. The project is a collaboration between researchers at Education Development Center Inc.'s Center for Children and Technology (EDC|CCT) and the assessment and game development teams at GlassLab. The research and development teams will engage in a three-year partnership with 60 middle-grade science teachers working in diverse school settings in different parts of the country. The aim of the project is to refine an online formative assessment platform that utilizes data from a video game designed to teach argumentation at the middle school level. It provides rigorous research on the design features of data tools and associated materials available to teachers to inform their ongoing instruction (i.e., formative assessment tools) when using game-based platforms.

Dissemination of the results of this project will include practical, evidence-based suggestions for supporting middle school science teachers' use of digital games for assessment, and for the design and implementation of data dashboards. Key audiences include educational game designers, game-based assessment developers, formative assessment experts, and leaders in middle grade science teaching and learning.

Student-Adaptive Pedagogy for Elementary Teachers: Promoting Multiplicative and Fractional Reasoning to Improve Students' Preparedness for Middle School Mathematics

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics.

Lead Organization(s): 
Award Number: 
1503206
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project develops a teacher professional development intervention to support student-adaptive pedagogy for multiplicative and fractional reasoning. The idea is that classroom instruction should build on students' current conceptions and experiences. The context for the study is grades 3-5 teachers in Aurora Public Schools. It focuses on students from urban, underserved and low-socioeconomic status populations who often fall behind in the elementary grades and are left underprepared for middle grades mathematics. It includes a summer workshop and academic year follow-up including teacher collaboration. The project provides tools for capitalizing on successful, school-based research for promoting teachers' buy-in, adoption, and sustaining of student-adaptive pedagogy. The project also includes measurement of student understanding of the concepts. An extensive plan to share tools and resources for teachers and instructional coaches (scalable to district/state levels) and of research instruments and findings, will promote sharing project outcomes with a wide community of stakeholders (teachers, administrators, researchers, parents, policy makers) responsible for students' growth. This is a Full Design & Development project within the DRK-12 Program's Learning Strand. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project aims to implement and study a professional development intervention designed to shift upper-elementary teachers' mathematics teaching toward a constructivist approach, called student-adaptive pedagogy (AdPed), which adapts teaching goals and activities based on students' conceptions and experiences. The project focuses on multiplicative and fractional reasoning--critical for students' success in key areas of middle school mathematics (e.g., ratio, proportion, and function). The project seeks to design an instrument for measuring teachers' implementation of AdPed, a clinical interview rubric for students' multiplicative reasoning and then an analysis of teachers' content knowledge and the implementation of AdPed following the professional development. The research design is rooted in an innovative, cohesive framework that integrates four research-based components: (i) a model of mathematics learning and knowing, (ii) models of progressions in students' multiplicative and fractional reasoning, (iii) a model of teaching (AdPed) to promote such learning, and (iv) a mathematics teacher development continuum. Capitalizing on successful preliminary efforts in the Denver Metro area to refine a PD intervention and student-adaptive tools that challenge and transform current practices, the project will first validate and test instruments to measure (a) teacher growth toward adaptive pedagogy and (b) students' growth in multiplicative reasoning. Using these new instruments, along with available measures, the project will then promote school-wide teacher professional development (grades 3-5) in multiple schools in an urban district with large underserved student populations and study the professional development benefits for teacher practices and student outcomes. The mixed methods study includes classroom-based data (e.g., video analysis, lesson observations, teacher interviews) and measures of students' multiplicative reasoning specifically and mathematical understanding generally.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Zoombinis: The Full Development Implementation Research Study of a Computational Thinking Game for Upper Elementary and Middle School Learners

This project leverages an existing game by embedding tools for studying patterns of students' decision-making and problem solving in the environment. This allows researchers to understand how students learn about computational thinking within a tool that bridges informal and formal learning settings to engage a wide variety of students. The project will also develop tools and resources for classroom teachers.

Lead Organization(s): 
Award Number: 
1502882
Funding Period: 
Wed, 07/15/2015 to Sat, 06/30/2018
Full Description: 

The Logical Journey of the Zoombinis implementation research study examines the development of computational thinking for upper elementary and middle grades students. Computational thinking is the set of ideas and practices considered vital for computer science skills and has been attracting increased attention over the past several years in K-12 education. This project leverages an existing game by embedding tools for studying patterns of students' decision-making and problem solving in the environment. This allows researchers to understand how students learn about computational thinking within a tool that bridges informal and formal learning settings to engage a wide variety of students. The project will also develop tools and resources for classroom teachers. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The research examines three questions. First, what strategies do players develop during Zoombinis gameplay that may provide evidence of implicit computational thinking? Second, how can teachers leverage implicit knowledge of computational thinking developed in Zoombinis to improve formal (explicit) learning? Third, how can a large-scale commercial game be used for broad and equitable improvement of computational thinking? The research uses and develops educational data mining techniques to assess students' learning in conjunction with pre-post computational thinking assessments (external to the game), teacher interviews, classroom observations, and case studies of classroom use. The goal is to understand both students' learning of computational thinking and how to bridge the formal and informal learning via classroom implementation of the Zoombinis game.

Strengthening the Quality, Design and Usability of Simulations as Assessments of Teaching Practice

Ensuring that beginning teachers are "classroom-ready" requires assessments that efficiently and validly evaluate proficiency in teaching. This project explores assessments involving simulated students as a way to assess teaching practice, which could provide an important complement, or alternative, to directly assessing teaching practice in classrooms.

Lead Organization(s): 
Award Number: 
1502711
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

Ensuring that beginning teachers are "classroom-ready" requires assessments that efficiently and validly evaluate proficiency in teaching. This project explores assessments involving simulated students as a way to assess teaching practice, which could provide an important complement, or alternative, to directly assessing teaching practice in classrooms. This form of assessment has the potential to provide a way to avoid onerous expense, logistics, and other difficulties of assessments happening in classrooms. The project will address questions about the development of performance expectations for elementary mathematics teachers, the extent to which the performance of the "student" role can be standardized across different performance contexts, and different approaches for generating teaching scenarios. The assessments will focus on the teaching practices of eliciting and interpreting students' mathematical thinking. The project will support: (1) establishing the validity of the assessment as a means to assess readiness to teach elementary mathematics and (2) providing the necessary foundation for scaling research and the use of simulation assessments. 

The goal of this project is generating, calibrating, and studying standardized simulations of clinical performance of mathematics teaching. The strategy is to investigate three components of the simulation assessment that will enable its broader use in the field. One component will focus on approaches that use different foundations (wisdom of practice, interactions with children, and learning trajectories research) for the design of simulations that are authentic and provide robust information about teaching. Data on the ways in which each approach supplies resources needed for assessment development will be compared. Another component will focus on the degree to which the role of the student can be standardized given the dynamics of teaching. Data on the responses of standardized students, who have similar initial training, to different situational categories will be analyzed. A final component will be establishing a basis for calibrating performance expectations for simulations linked to key points in a teacher's career trajectory (early career teachers, experienced teachers, "accomplished" teachers). Data on the performance of teachers at different points in their careers on the same assessment simulations will be compared. This study of components impacting assessment design will result in a more robust foundation for further development of, and further research on, teaching simulation assessments. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Pages

Subscribe to Teachers