Administrators

Building Networks and Enhancing Diversity in the K-12 STEM Teaching Workforce

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2040784
Funding Period: 
Tue, 12/01/2020 to Tue, 11/30/2021
Full Description: 

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career. Currently there is a large demographic discrepancy between students and teachers in K-12 schools. Studies have highlighted that the diverse teaching workforce benefits not only students of color but all students. Since 2017, the Smithsonian Science Education Center has conducted an annual STEM Diversity Summit, with the goal of building a coalition (built on collective impact) for attracting and retaining a diverse K-12 STEM teaching workforce, in which teams of teachers and administrators representing 83 school districts, schools, and states across the country shared their problems and developed a logic model to attract and retain a diverse K-12 STEM teaching workforce in their region with annual support from a matched mentor. This planning grant supports revisiting those former teams to better understand the dynamics of systems change through close examination of the successes and challenges outlined in their logic models with the perspective of the Cultural-Historical Activity Theory (CHAT). Under the collaborative infrastructure elements of shared vision and partnerships, this planning grant will inform and lay the foundation for a future alliance focused on diversifying the K-12 STEM teaching workforce.

In this planning grant, the Smithsonian in collaboration with Howard University, as well as in partnership with other experts in STEM teacher education, professional development, and diversityincluding from Harvard University, Rutgers University, 100kin10, National Board for Professional Teaching Standards, MA Department of Higher Education, STEM Equity Alliance, National Science Teaching Association, and private industrywill work on four primary activities. First, a survey will be developed and conducted with faculty members of Institutions of Higher Education (IHEs), including approximately 100 Minority Serving Institutions, which serve diverse populations in K-12 teacher preparation programs and STEM education across the country. The goal of the survey is to understand what roles IHEs play in organizational change management and strategic planning to diversify the K-12 STEM teaching workforce. Second, a virtual workshop will be convened to bring former STEM Diversity Summit attendees and their extended networks to reflect on their progress and activities in past years and discuss strategic long-term plans. Third, a survey with the virtual workshop participants will be conducted to better understand their practices, attitudes, and perceptions about their roles to create culturally diverse ecosystems in K-12 STEM education. Finally, all the collected information from the above activities will be used to investigate strategies and evidence-based practices of enhancing diversity in the K-12 STEM teaching workforce, and an iterative source book will be developed based on those findings as an initial resource to ground future work. Over a 12 month period, this planning grant will build a network between the former teams and with the extended partners, including the NSF INCLUDES National Network, and help them to grow as regional hubs within a Future NSF INCLUDES Alliance focused on diversifying the K-12 STEM teacher workforce, with the Smithsonian as the backbone organization.

Creating a Model for Sustainable Ambitious Mathematics Programs in High-Need Settings: A Researcher-Practitioner Collaboration

This project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning.

Lead Organization(s): 
Award Number: 
2010111
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

A long-standing challenge in secondary mathematics education is broadening participation in STEM. Reform of schools and districts to support this goal can be challenging to sustain. This implementation and improvement project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning. The project team includes school district partners that have successfully transformed mathematics teaching to better support students' learning.

The project will develop a model for understanding the demands and resources from an organizational perspective that support ambitious mathematics teaching and learning reforms. Demands are requirements for physical resources or efforts that need to be met in the instructional system. Resources are the material, human, instructional, and organizational requirements needed to address demands. The project will develop the model through a collaboration of researchers, professional development leaders, students, teachers, coaches, and administrators to: (1) understand the demands created throughout a school or district when implementing an ambitious secondary mathematics program in a high-need context; (2) identify the resources and organizational dynamics necessary to address the demands and thus sustain the program; and (3) articulate a model for a sustainable ambitious secondary mathematics program in high-need settings that has validity across a range of implementation contexts. To develop the model over multiple iterations, the project will examine the demands and resources related to implementing an ambitious mathematics program, the perspectives of stakeholders, the organizational structure, and the program goals and implementation. The project will also conduct a systematic literature review to bring together findings from the successful district and other research findings. The data collection and analysis process will include interviews, document analysis, collection of artifacts, and observations across four phases of the project.  Participants will include students, teachers, instructional support personnel, and administrators (from schools and the district).

Reaching Across the Hallway: An Interdisciplinary Approach to Teaching Computer Science in Rural Schools

This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.

Lead Organization(s): 
Award Number: 
2010256
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Strengthening computer science (CS) and computational thinking (CT) education is a national priority with particular attention to increasing the number of teachers prepared to deliver computer science courses. For rural schools, that collectively serve more than 10 million students, it is especially challenging. Rural schools find it difficult to recruit and retain STEM teachers that are prepared to teach computer science and computational thinking. This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project will build teachers' self-efficacy to deliver computer science concepts and practices into middle school social studies classrooms. The project is led by CodeVA (a statewide non-profit in Virginia), in partnership with TERC (a STEM-focused national research institution) and the University of South Florida College of Education, and in collaboration with six rural school districts in Virginia. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science. The professional development model will be designed and developed around meeting rural teachers, where they are, geographically, economically, and culturally. The model will also be sustainable and will work within the resource constraints of the rural school district. The model will also be built on strategies that will broadly spread CS education while building rural capacity.

The project will use a mixed-methods research approach to understand the model's potential to build capacity for teaching CS in rural schools. The research design is broken down into four distinct phases; planning/development prototyping, piloting and initial dissemination, an efficacy study, and analysis, and dissemination. The project will recruit 45 teacher-leaders and one district-level instructional coach, 6th and 7th-grade teachers, and serve over 1900 6th and 7th-grade students. Participants will be recruited from the rural Virginia school districts of Buchanan, Russell, Charlotte, Halifax, and Northampton. The research question for phase 1 is what is each district's existing practice around computer science education (if any) and social studies education? Phases 2, 3 and 4 research will examine the effectiveness of professional development on teacher leadership and the CS curricular integration. Phase 4 research will examine teacher efficacy to implement the professional development independently, enabling district teachers to integrate CS into their social studies classes. Teacher data sources for each phase include interviews with administrators and teachers, teacher readiness surveys, observations, an examination of artifacts, and CS/CT content interviews. Student data will consist of classroom observation and student attitude surveys. Quantitative and qualitative data will be triangulated to address each set of research questions and provide a reliability check on findings. Qualitative data, such as observations/video, and interview data will be analyzed through codes that represent expected themes and patterns related to teachers' and coaches' experiences. Project results will be communicated through presentations at conferences such as Special Interest Group on Computer Science Education, the Computer Science Teachers Association (CSTA), the National Council for Social Studies (NCSS), and the American Educational Research Association. Lesson plans will be made available on the project website, and links will be provided through publications and newsletters such as the NCSS Middle-Level Learner, NCSS Social Education, CSTA the Voice, the NSF-funded CADREK12 website and the NSF-funded STEM Video Showcase.

SPIRAL: Supporting Professional Inquiry and Re-Aligning Learning through a Structured e-Portfolio System

This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS).

Award Number: 
2010505
Funding Period: 
Thu, 10/01/2020 to Sat, 09/30/2023
Full Description: 

Professional development for science teachers is often restricted to content required for a single grade level or grade band. Consequently, teachers seldom have the opportunity to discuss evidence of how learning occurs as students pass from grade to grade. This project would investigate a new model of professional development for teams of science teachers in grades K-8 who would create electronic portfolios documenting how they taught specific concepts about energy. In addition, teachers would also select evidence of student understanding of the concepts and add those materials to their portfolios. The study focuses on teaching and learning energy core ideas and science practices that are aligned with the Next Generation Science Standards (NGSS). The core ideas are designed to spiral over grade levels, with each core idea being revisited with more complexity as students advance from grades K to 8. The electronic portfolio will include images of artifacts such as student work samples and videos that reflect students' evolving thinking and discourse about energy topics. As teachers organize, share, and discuss this progression of evidence in professional learning communities guided by the researchers, the goal is to have a vertical electronic display of artifacts that illustrates how learning can occur. The vertically aligned evidence will help other teachers in the school district to gain an increasingly complex understanding of student learning trajectories across grade levels to improve teaching and learning in science classrooms across the district. The project is innovative because its goal is to move beyond the grade-level collaborations typical of professional development practice and literature, toward multi-grade teams of teachers who engage in complex reflection about spiraling core ideas and scientific practices developed by students over time.

The research questions are: 1.) How does participation in a vertical professional learning community (PLC) influence teachers' knowledge and instruction for teaching disciplinary core ideas through engagement in science practices? 2.) In what ways does professional learning about science teaching and learning differ in a vertical PLC, compared to grade-level PLCs? And 3.) How does the use of an electronic portfolio and feedback system influence teachers' learning from a vertical PLC? The study will first work with K-8 teacher leaders in the Little River Unified School District in California where an electronic portfolio system is already in place due to a prior NSF grant. In the first year, the researchers will add new features to the electronic portfolio system to expand its capabilities. Each teacher would provide a 5-day portfolio of lessons in the fall semester of the first year as a baseline measure of instructional practices. The project will focus on NGSS competencies in developing models and constructing explanations for energy concepts. The researchers will measure progress through teacher interviews, surveys, and lesson plans. Teachers will also collect additional artifacts reflecting student-drawn conceptual models and written or oral causal explanations of anchoring phenomena throughout the assigned units. By the end of the study, teachers will collect new 5-day portfolios, to sum up what they have learned and how they are approaching teaching the energy concepts and science practices. Participating teacher leaders will work with the UCLA research team to design and facilitate a series of professional development modules for all science teachers across grades K-8. These modules will use the evidence in the vertical portfolios to illustrate teaching and learning trajectories across K-8 physical science energy concepts and science.

Synchronous Online Video-Based Development for Rural Mathematics Coaches (Collaborative Research: Amador)

This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts.

Lead Organization(s): 
Award Number: 
2006353
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

Mathematics coaching is a research-based method to improve teacher quality, yet there is little research on teaching and coaching mathematics in rural contexts. In addition, mathematics coaches in rural contexts frequently work in isolation with little access to professional learning opportunities to support their coaching practice. This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.

Three cohorts of 12 coach participants will be recruited, with one cohort launching each year. In the first year, coaches will participate in four 2-hour synchronous content-focused course meetings, two coaching cycles with a mentor coach, and four video club meetings. In the second year, cohorts will conduct and facilitate four video club meetings. Research on impact follows a design-based model, with iterative cycles of design and revision of the online model. An ongoing analysis of 15-20% of the data collected each year will be used to inform revisions to the model from year to year, with fuller data analysis ongoing throughout the project. Participating coaches will be engaged in a noticing interview and surveys to assess changes in their perceptions and practices as coaches. Each coach participant will record one coaching interaction as data to assess changes in coaching practices. Patterns of participation and artifacts from the online course will be analyzed. Coaching cycle meetings and video club meetings will be recorded and transcribed. The Learning to Notice framework will be used as an analytical lens for describing changes in coaching practice.

The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Synchronous Online Video-Based Development for Rural Mathematics Coaches (Collaborative Research: Choppin)

This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts.

Lead Organization(s): 
Award Number: 
2006263
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

Mathematics coaching is a research-based method to improve teacher quality, yet there is little research on teaching and coaching mathematics in rural contexts. In addition, mathematics coaches in rural contexts frequently work in isolation with little access to professional learning opportunities to support their coaching practice. This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.

Three cohorts of 12 coach participants will be recruited, with one cohort launching each year. In the first year, coaches will participate in four 2-hour synchronous content-focused course meetings, two coaching cycles with a mentor coach, and four video club meetings. In the second year, cohorts will conduct and facilitate four video club meetings. Research on impact follows a design-based model, with iterative cycles of design and revision of the online model. An ongoing analysis of 15-20% of the data collected each year will be used to inform revisions to the model from year to year, with fuller data analysis ongoing throughout the project. Participating coaches will be engaged in a noticing interview and surveys to assess changes in their perceptions and practices as coaches. Each coach participant will record one coaching interaction as data to assess changes in coaching practices. Patterns of participation and artifacts from the online course will be analyzed. Coaching cycle meetings and video club meetings will be recorded and transcribed. The Learning to Notice framework will be used as an analytical lens for describing changes in coaching practice.

The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

International Mind, Brain and Education Society (IMBES): 2020 Biennial Conference

This award will support teacher practitioners from the U.S. to attend the 2020 International Mind, Brain, and Education Society (IMBES) conference. The IMBES conference is an opportunity for scholars and educators to come together to engage in reciprocal dialogue about research and practice in biology, education, and the cognitive and developmental sciences.

Lead Organization(s): 
Award Number: 
2016241
Funding Period: 
Sun, 03/15/2020 to Thu, 12/31/2020
Full Description: 

The International Mind, Brain, and Education Society (IMBES) conference has taken place every 2-3 years since 2007. IMBES aims to facilitate cross-cultural collaboration in biology, education, and the cognitive and developmental sciences. The IMBES meeting is an opportunity for scholars and educators to come together to engage in reciprocal dialogue about research and practice. Researchers investigating learning processes have the opportunity to share results with educators and receive feedback on the translational opportunities for the research. Educators can update their understanding of the cognitive and neural bases of learning and impart their knowledge of efficacious techniques, tools, and classroom practices with researchers. This type of interaction between researchers and practitioners is crucial for generating research that contributes to usable knowledge for education. This conference aims to assess the degree to which scientific ideas are ready for the classroom, consider the extent to which further educational research is still required, evaluate the potential of current research in meaningfully shaping pedagogy, and recognize opportunities to use the classroom to challenge the robustness of research.

This award to Temple University will provide partial support for the International, Mind, Brain, and Education Society (IMBES) conference to be held in Montreal in June 2020. This award will specifically support teacher practitioners from the U.S. to attend the conference and learn more about educational neuroscience and its potential implications for practice. The teacher practitioners will also have opportunities to share with researchers the nature of effective educational practice.

Systemic Transformation of Inquiry Learning Environments for STEM

This project will help teachers design and facilitate high-quality, real world STEM experiences for students, as teachers move from traditional approaches to organizing their teaching around interdisciplinary questions or problems. The project will work with building administrators to make the structural changes needed for interdisciplinary STEM instruction.

Award Number: 
2010530
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

This project will address a special challenge for schools: preparing educators to adopt an integrated approach to Science, Technology, Engineering and Mathematics (STEM). This is especially important for educators in underserved urban populations where teacher expertise and guidance are necessary for meaningful student engagement with STEM. Frameworks for helping teachers make these changes are urgently needed, especially approaches that support new perspectives for STEM teaching and learning at the school level. This project will help teachers design and facilitate high-quality, real world STEM experiences for students, as teachers move from traditional approaches to organizing their teaching around interdisciplinary questions or problems. The project will work with building administrators to make the structural changes needed for interdisciplinary STEM instruction. School-based instructional coaches will develop new strategies for guiding STEM teaching and sustaining the work long-term.

The project goals are to: (1) determine the feasibility and utility of the refined project approach, (2) determine the utility of the project's implementation for facilitating change in teacher knowledge and practices, (3) understand the utility of the project's implementation for fostering student change, and (4) understand the extent to which the refined project model supports organizational change in schools. To do this, the program will make its professional development more accessible by adding a blended learning component, expanding the school leadership program, formalizing a training program for new facilitators, and identifying novel ways of defining student outcomes for transdisciplinary learning. The mixed methods research design will involve twenty schools (elementary and intermediate) in New York City and New Haven, CT. A quasi-experimental, within-school rotation model will randomize grade-level participation at the school level to yield a sample of at least 240 teachers, 3,000 students, 40 school-based coaches, and 20 administrators. Quantitative data will primarily capture teacher and student outcomes, while the qualitative data will describe the context of the model implementation and provide a deeper understanding of the quantitative results.

Teaching Science Outdoors: A Next Generation Approach for Advancing Elementary Science Teaching in Urban Communities

This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.

Lead Organization(s): 
Award Number: 
1907506
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project addresses a long-standing challenge in science education centered on providing meaningful science education opportunities to students living in communities of high poverty and attending under-resourced elementary schools. These students are significantly less likely to receive high-quality science learning opportunities and to be encouraged to engage in (rather than simply learn about) science. This Michigan State University research project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. It builds on and advances prior outdoor education work for the current context of science education that requires elementary teachers to engage students in making sense of phenomena using next generation science and engineering practices. The goal of this project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms. It also will advance knowledge on ways to bridge informal and formal learning environments. To achieve these goals, the project will develop, enact and study a program that involves a scaffolded series of summer professional development sessions focused on outdoor learning and school year follow-up meetings and classroom-based coaching for elementary teachers and informal educators from two high-need districts.

Design-based research will be utilized to: 1) foster teacher practices and study how these develop over time, 2) work with teachers to measure student outcomes, and 3) determine what aspects of this formal/informal approach are productive, measures of student engagement and student learning artifacts--will be analyzed. The project will serve as a model for developing partnerships between informal science organizations, educators, and K-12 programs. Revised measures and outcomes of teacher practices and student learning; outdoor-focused lesson plans; cases illustrating how elementary teachers develop and enact NGSS-aligned outdoor lessons; a revised informal-formal theoretical model; and information about dissemination of products including facilitation guidelines and coaching approaches will be developed and disseminated.

Human Variance and Assessment for Learning Implications for Diverse Learners of STEM: A National Conference

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests.

Lead Organization(s): 
Award Number: 
1939192
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The conference purpose is to stimulate a national conversation concerning the relationships between assessment, teaching and learning that include scholarly research and development of tests; members of city and state boards of education; officials from states and major school systems; policymakers; and representatives of teachers' associations and parents' associations. This conference aims to attract these important professionals has important co-sponsors like the Urban Institute. This national conference flows from the work of the Gordon Commission on the Future of Assessment for Education that addressed the advancement of achievement in STEM disciplines (PreK-12) for students who are underrepresented among high achieving students. This issue of advancement of underrepresented high achieving students has received little concentrated effort and a conference would help in providing greater understanding of this special concern, which includes a student in poverty in complexed family structures.

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests. The conference will stimulate national conversation and ultimately a market that demands educational assessments that inform and improve teaching and learning transactions. The conference will be organized around four conceptual and theoretical papers that focus on the knowledge base upon which six concurrent workshops will be based. The four papers are: (1) Human Diversity and Assessment; (2) The Limits of Test Bias and Its Corrections; (3) Towards an Assessment Science Capable of Informing and Improving Learning; and  (4) Assessment in the Service of Learning. The workshops will focus on models of pedagogical practice that show promise for informing and improving teaching and learning processes and their outcomes. These issues will be discussed by 11-15 expert presenters who understand student learning and the types of information gleaned from different types of assessments. The attention to URMs and their needs and contexts are prioritized in discussions surrounding measurement science and the integration of assessment. Several important issues that address understanding of student learning, and the relationship between the varieties of information concerning students that can be accessed through assessments are: (1) The importance of the broader and more productive use of educational testing to improve the learning of STEM subject matter and values; (2) Curriculum embedded assessment and the reduction in disparities in achievement by STEM learners from diverse social divisions; (3) Innovative procedures and programs for the use of data concerning learners and teaching and learning transactions in the teaching and learning of STEM with learners who are underrepresented among high achieving STEM learners.

Pages

Subscribe to Administrators