High School

Improving Evaluations of STEM Programs: An Empirical Investigation of Key Design Parameters

This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts, and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level.

Lead Organization(s): 
Award Number: 
2000388
Funding Period: 
Mon, 06/15/2020 to Wed, 05/31/2023
Full Description: 

To improve science, technology, engineering, and mathematics (STEM) outcomes in K-12 classrooms, it is critical to understand the landscape of the STEM learning environment. However, the STEM learning environment is complex. Students are nested within teachers, and teachers are nested within schools (which in turn are nested within districts), which implies a multilevel structure. To date, most empirical research that uses multilevel modeling to examine the role of higher levels on variation in student outcomes does not examine the teacher level. The reason is that for many states, data linkages between students and teachers have been difficult to achieve. However, in the last five years, this situation has improved in many states, which makes this work now possible. This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level. This work will support advances in research and evaluation methodologies that will enable researchers to design more rigorous and comprehensive evaluations of STEM interventions and improve the accuracy of statistical power calculations. Broad dissemination of the resulting tools and techniques will provide access through freely available websites, and workshops and training opportunities to build capacity in the field for STEM researchers to design cluster randomized trials (CRTs) to answer questions beyond what works to for whom and under what conditions.

This project will contribute to 1) describing and explaining the landscape of the STEM learning environment, an environment which includes students, teachers, and schools, and 2) applying this empirical information in the design of STEM intervention studies to enable researchers to extend beyond the usual questions about if the intervention works and for which types of students or schools. By adding teacher level variables, this analysis would account for key teacher characteristics that may moderate the treatment effect. The research will also increase the efficiency in the design of CRTs of STEM interventions. Specifically, the findings from this study will improve the internal validity and cost-efficiency of evaluations of STEM interventions by increasing the accuracy of estimates for the full range of parameters needed to conduct power analyses, particularly when the teacher level is included. The high cost associated with CRTs makes it critical to plan accurate trials that do not overestimate the required sample size, and hence cost more than necessary, or underestimate the sample size and thereby reduce the potential to generate high-quality evidence of program effectiveness. Including the teacher level in intervention studies, a critical level in the delivery of any intervention, will allow for more testing of teacher characteristics that may moderate intervention effects.

Anchoring High School Students in Real-Life Issues that Integrate STEM Content and Literacy

Through the integration of STEM content and literacy, this project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue.

Lead Organization(s): 
Award Number: 
2010312
Funding Period: 
Sat, 08/15/2020 to Sun, 07/31/2022
Full Description: 

The STEM Literacy Project sets out to support student learning through developing teacher expertise in collaborative integration of STEM in student writing and literacy skills development. Facilitated by teachers, students will read, discuss, and then write about real-world STEM scenarios, such as water quality or health. The project will build on and research a professional development program first developed through a state-supported literacy program for middle and high school science and math teachers to improve literacy-integrated instruction. The goals of this project include the following: (1) Create a community of practice that recognizes high school teachers as content experts; (2) Implement high quality professional development for teachers on STEM/Literacy integration; (3) Develop assessments based on STEM and literacy standards that inform instruction; and (4) Conduct rigorous research to understand the impact of the professional development. The program is aligned with state and national standards for college and career readiness. Project resources will be widely shared through a regularly updated project website (stemliteracyproject.org), conference presentations, and publications reaching researchers, developers, and educators. These resources will include scenario-based assessment tools and instructional materials.

Through the integration of STEM content and literacy, the project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue. These scenarios provide students with agency as they craft an argument for an audience, such as presenting to a city council, a school board, or another group of stakeholders. Project research will use a mixed methods design. Based on the work completed through the initial designs and development of scenario-based assessments, rubrics, and scoring processes, the project will study the impact on instruction and student learning. Using a triangulation design convergence model, findings will be compared and contrasted in order for the data to inform one another and lead to further interpretation of the data. project will analyze the features of STEM content learning after program-related instruction. Data collected will include pre-post student scenario-based writing; pre-post interviews of up to 40 students each year; pre-post teacher interviews; and teacher-created scenario-based assessments and supporting instructional materials. Student learning reflected in the assessments paired with student and teacher interview responses will provide a deeper understanding of this approach of integrating STEM and literacy. The use of discourse analysis methods will allow growth in content learning to be measured through language use. Project research will build knowledge in the field concerning how participation in teacher professional development integrating STEM content in literacy practices impacts teacher practices and student learning.

An Online Reflection and Community-based Instructional Development System for Mathematics Education

The project will create a system of online mathematics teacher professional development modules for middle and high school teachers. Teachers will engage in online, asynchronous, high-quality mathematics learning experiences that mirror research-based productive classroom practices and models of instruction that feature active learning and student collaboration, explanation, and discussion.

Lead Organization(s): 
Award Number: 
2010306
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will create a system of online mathematics teacher professional development modules for middle and high school teachers. Teachers will engage in online, asynchronous, high-quality mathematics learning experiences that mirror research-based productive classroom practices and models of instruction that feature active learning and student collaboration, explanation, and discussion. The modules will integrate mathematics content and teaching strategies for teachers. The teachers will work collaboratively using math tasks, their own students' work, and other resources to develop teaching practices to support mathematical problem solving. Developing online environments for teacher development is critical to reaching greater numbers of teachers, providing flexible options for learning, and taking advantage of online opportunities for collaborative learning. In particular, the software will allow teachers to share, comment and discuss mathematical work.

The field of mathematics education needs to understand the development and implementation of online learning modules for mathematics teacher development. This project will create an environment that integrates content and pedagogical knowledge via mathematics-focused modules. The project builds on the Online Asynchronous Collaboration in Mathematics Teacher Education model to create the modules. The project's research questions are about the how the teachers build mathematics knowledge for teaching together online. They also examine teacher reflection on students' mathematical works, teacher collaboration, and reciprocal perspective-taking. Finally, the research examines how shifts in instruction are supported as teachers are learning new practices in the modules. The implementation study will use data such as measures of teacher knowledge, questionnaires, artifacts from the online platform, interviews, and other sources. These will be analyzed using a mixed methods approach to understand teachers' learning, collaboration and use of the modules and to refine the modules themselves. The findings of the study should inform the design of online learning experiences for mathematics teachers, new models for teacher development, and understanding of secondary mathematics teacher knowledge and practice.

Co-learning Math Teaching Project: Collaborative Structures to Support Learning to Teach across the Professional Teaching Continuum

This project will design and study an innovative model of collaborative learning for pre-service and experienced secondary mathematics teachers that focuses on equitable mathematics teaching practices that include understanding students' knowledge, math understandings, and experiences they bring to the classroom.

Lead Organization(s): 
Award Number: 
2010634
Funding Period: 
Sun, 11/01/2020 to Thu, 10/31/2024
Full Description: 

An ongoing challenge for the preparation of new mathematics teachers is creating quality experiences in classrooms for student teaching. The project will design and study an innovative model of collaborative learning for pre-service and experienced secondary mathematics teachers. Multiple pre-service teachers will collaborate in the same secondary mathematics teacher's classroom for their field placements. The partnership between the school and the university will allow for professional development for the pre-service teachers and the experienced teachers. A particular focus of the project will be equity in mathematics teaching and learning. Developing equitable mathematics teaching practices includes better understanding students' knowledge, math understandings, and experiences they bring to the classroom. Improving the student teaching experience may improve retention in the teaching profession and help pre-service teachers be better prepared for their first years of teaching.

This is an exploratory project about mathematics teaching and teacher development in field experiences for pre-service teachers. The project introduces collaborative learning structures for pre-service teacher education that focus on equitable mathematics teaching practices. The collaborative learning structures include both the cooperating teacher and multiple pre-service teachers working in the same classroom. The project will use a design-based research model to systematically study the process of co-learning and the critical features of collaborative learning structures as they are designed to support co-learning between novice and experienced teachers. Multiple universities are included in the project in order to compare the model in different settings. The project will use Math Studio as a model for the teachers to focus on a lesson taught by one teacher but the group plans, observes, and reflects about the lesson together. A facilitator or math coach supports the group's work during the Math Studio process. The project has two research questions. First, how do pre-service teachers and cooperating teachers co-learn? More specifically, what vision, dispositions, understandings and practices of justification and generalization does each teacher develop during their time together? How does each teacher's vision, dispositions, understandings, and practices of mathematics teaching shift during their time together? Second, what are the design characteristics of the collaborative learning structures that support or inhibit pre-service teachers and cooperating teachers in learning? The qualitative study will collect video recordings and artifacts from the Math Studio, assessments of math teaching practices, and data from the leadership team in order to compare the model's implementation at different sites. The data analysis will occur iteratively throughout the project to refine the coding framework to describe learning and shifts in teacher practice.

Exploring COVID and the Effects on U.S. Education: Evidence from a National Survey of American Households

This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Award Number: 
2037179
Funding Period: 
Wed, 07/15/2020 to Wed, 06/30/2021
Full Description: 

The COVID-19 epidemic has been a tremendous disruption to the education of U.S. students and their families, and early evidence suggests that this disruption has been unequally felt across households by income and race/ethnicity. While other ongoing data collection efforts focus on understanding this disruption from the perspective of students or educators, less is known about the impact of COVID-19 on children's prek-12 educational experiences as reported by their parents, especially in STEM subjects. This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.

Since March of 2020, the UAS has been tracking the educational impacts of COVID-19 for a nationally representative sample of approximately 1,500 households with preK-12 children. Early results focused on quantifying the digital divide and documenting the receipt of important educational serviceslike free meals and special education servicesafter COVID-19 began. This project will support targeted administration of UAS questions to parents about students' learning experiences and engagement, overall and in STEM subjects, data analysis, and dissemination of results to key stakeholder groups. Findings will be reported overall and across key demographic groups including ethnicity, disability, urbanicity, and socioeconomic status. The grant will also support targeted research briefs addressing pressing policy questions aimed at supporting intervention strategies in states, districts, and schools moving forward. Widespread dissemination will take place through existing networks and in collaboration with other research projects focused on understanding the COVID-19 crisis. All cross-sectional and longitudinal UAS data files will be publicly available shortly after conclusion of administration so that other researchers can explore the correlates of, and outcomes associated with, COVID-19.

Incorporating Professional Science Writing into High School STEM Research Projects

The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.

Lead Organization(s): 
Award Number: 
2010333
Funding Period: 
Wed, 07/15/2020 to Fri, 06/30/2023
Project Evaluator: 
Maya Patel
Full Description: 

This exploratory project addresses important challenge of incorporating disciplinary literacy practices in scientific inquiry projects of high school students. The project will incorporate the peer-review process and publication in the Journal of Emerging Investigators (JEI). The Next Generation Science Standards emphasize constructs from disciplinary literacy such as engaging in argument from evidence, and evaluating and communicating information. However, there are few resources available to students and teachers that integrate these constructs in authentic forms that reflect the practices of professional scientists. High school student learners engage in scientific inquiry, but rarely participate in authentic forms of communication, forms that are reflective of how scientists communicate and participate in the primary literature of their fields. The project has three aims: 1) Generate knowledge of the impact of peer-review and publication on perceptions and skills of scientific inquiry and STEM identity, 2) Generate knowledge of how participation in peer-review and publication are impacted by contextual factors (differences in mentors and research contexts), and 3) Develop JEI field-guides across a range of contexts in which students conduct their research.

The goal of the project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry. The project will investigate how participation in peer-reviewed publications will have an impact on student learning by administering a set of pre- and post-surveys to students who submit a paper to JEI. The project will expand student participation in JEI via outreach to teachers in under-resourced and remote areas by delivering virtual and in-person workshops which will serve to demystify peer review and publication, and explore ways to integrate these processes into existing inquiry projects. Other efforts will focus on understanding how student contextual experiences can impact their learning of scientific inquiry. These student experiences include the location of the project (school, home, university lab), the type of mentor they have, and how they became motivated to pursue publication of their research. The project will recruit students from under-resourced schools in New York through a collaboration with MathForAmerica and from rural areas through outreach with STEM coordinators in the Midwest. The resources created will be disseminated directly on the JEI website.

Assessing College-Ready Computational Thinking (Collaborative Research: Brown)

The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

Award Number: 
2010265
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

Because of the growing need for students to be college and career ready, high-quality assessments of college readiness skills are in high demand. To realize the goal of preparing students for college and careers, assessments must measure important competencies and provide rapid feedback to teachers. It is necessary to go beyond the limits of multiple-choice testing and foster the skills and thinking that lie at the core of college and career ready skills, such as computational thinking. Computational thinking is a set of valuable skills that can be used to solve problems, design systems, and understand human behavior, and is thus essential to developing a more STEM-literate public. Computational thinking is increasingly seen as a fundamental analytical skill that everyone, not just computer scientists, can use. The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

The project will address a set of research questions focused on 1) clarifying computational thinking constructs, 2) usability, reliability of validity of assessment items and the information they provide, 3) teachers' use of assessments, and 4) relationships to student performance. The study sample of 2,700 used for the pilot and field tests will include all levels of students in 10th through 12th grade and first year college students (both community college and university level). The target population is students in schools which are implementing the College Readiness Program (CRP) of the National Mathematics and Science Institute. In the 2020-21 academic year 54 high schools across 11 states (CA, GA, FL, ID, LA, NC, NM, OH, TX, VA, and WA) will participate. This will include high school students in Advanced Placement classes as well as non-Advanced Placement classes.  The team will use the BEAR Assessment System to develop and refine assessment materials. This system is an integrated approach to developing assessments that seeks to provide meaningful interpretations of student work relative to cognitive and developmental goals. The researchers will gather empirical evidence to develop and improve the assessment materials, and then gather reliability and validity evidence to support their use. In total, item response data will be collected from several thousand students. Student response data will be analyzed using multidimensional item response theory models.

Assessing College-Ready Computational Thinking (Collaborative Research: Wilson)

The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

Award Number: 
2010314
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

Because of the growing need for students to be college and career ready, high-quality assessments of college readiness skills are in high demand. To realize the goal of preparing students for college and careers, assessments must measure important competencies and provide rapid feedback to teachers. It is necessary to go beyond the limits of multiple-choice testing and foster the skills and thinking that lie at the core of college and career ready skills, such as computational thinking. Computational thinking is a set of valuable skills that can be used to solve problems, design systems, and understand human behavior, and is thus essential to developing a more STEM-literate public. Computational thinking is increasingly seen as a fundamental analytical skill that everyone, not just computer scientists, can use. The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

The project will address a set of research questions focused on 1) clarifying computational thinking constructs, 2) usability, reliability of validity of assessment items and the information they provide, 3) teachers' use of assessments, and 4) relationships to student performance. The study sample of 2,700 used for the pilot and field tests will include all levels of students in 10th through 12th grade and first year college students (both community college and university level). The target population is students in schools which are implementing the College Readiness Program (CRP) of the National Mathematics and Science Institute. In the 2020-21 academic year 54 high schools across 11 states (CA, GA, FL, ID, LA, NC, NM, OH, TX, VA, and WA) will participate. This will include high school students in Advanced Placement classes as well as non-Advanced Placement classes.  The team will use the BEAR Assessment System to develop and refine assessment materials. This system is an integrated approach to developing assessments that seeks to provide meaningful interpretations of student work relative to cognitive and developmental goals. The researchers will gather empirical evidence to develop and improve the assessment materials, and then gather reliability and validity evidence to support their use. In total, item response data will be collected from several thousand students. Student response data will be analyzed using multidimensional item response theory models.

Creating a Model for Sustainable Ambitious Mathematics Programs in High-Need Settings: A Researcher-Practitioner Collaboration

This project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning.

Lead Organization(s): 
Award Number: 
2010111
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

A long-standing challenge in secondary mathematics education is broadening participation in STEM. Reform of schools and districts to support this goal can be challenging to sustain. This implementation and improvement project will study a successful, ambitious mathematics reform effort in high-needs secondary schools. The goal is to develop resources and tools to support other high-needs schools and districts in transforming and sustaining  their mathematics programs. The model focuses on the resources required for change and the aspects of the organization that support or constrain change in mathematics teaching and learning. The project team includes school district partners that have successfully transformed mathematics teaching to better support students' learning.

The project will develop a model for understanding the demands and resources from an organizational perspective that support ambitious mathematics teaching and learning reforms. Demands are requirements for physical resources or efforts that need to be met in the instructional system. Resources are the material, human, instructional, and organizational requirements needed to address demands. The project will develop the model through a collaboration of researchers, professional development leaders, students, teachers, coaches, and administrators to: (1) understand the demands created throughout a school or district when implementing an ambitious secondary mathematics program in a high-need context; (2) identify the resources and organizational dynamics necessary to address the demands and thus sustain the program; and (3) articulate a model for a sustainable ambitious secondary mathematics program in high-need settings that has validity across a range of implementation contexts. To develop the model over multiple iterations, the project will examine the demands and resources related to implementing an ambitious mathematics program, the perspectives of stakeholders, the organizational structure, and the program goals and implementation. The project will also conduct a systematic literature review to bring together findings from the successful district and other research findings. The data collection and analysis process will include interviews, document analysis, collection of artifacts, and observations across four phases of the project.  Participants will include students, teachers, instructional support personnel, and administrators (from schools and the district).

Geological Construction of Rock Arrangements from Tectonics: Systems Modeling Across Scales

This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.

Lead Organization(s): 
Award Number: 
2006144
Funding Period: 
Thu, 10/01/2020 to Mon, 09/30/2024
Full Description: 

Plate tectonics is the fundamental theory of geology that underlies almost all geological processes, including land and rock formation. However, the geologic processes and immense timeframes involved are often misunderstood. This study will create two curriculum units that use sophisticated simulations designed for students in secondary schools. The simulations will integrate the study of the tectonic system and the rock genesis system. Data from the simulations would be students' sources of evidence. For instance, the Tectonic Rock Explorer would use a sophisticated modeling engine that uses the physics involved in geodynamic data to represent compressional and tensional forces and calculate pressure and temperature in rock forming environments. This project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic. In addition, this study would include work on students with disabilities in earth science classrooms and explore the practices that seem to be particularly useful in helping understand these systems. By working with simulations, the researchers intend to engage students in scientific practices that are more authentic to the ways that geologists work. The researchers will study if and how these simulations and the computer-based tools allow students to observe and manipulate processes that would be may otherwise be inaccessible.

This work follows on from prior work done by the Concord Consortium on simulations of earth systems. The design and development progression in Years 1 and 2 would create two units. The first module focuses on the relationship between tectonic movement and rock formation. The second would investigate geochronology and dating of rock formations. The researchers would work with 3 teachers (and classes), and then 15 teachers (and classes) using automated data logs, class observations, and video of students working in groups in Years 1 and 2. Professional development for teachers would be followed by the creation of educative materials. Researchers will also develop the framework for an assessment tool that includes understanding of geologic terms and embedded assessments. The researchers will used a mixed methods approach to analyze student data, including analyses cycles of analysis of students pre- and post-test scores on targeted concepts, reports of student performances on tasks embedded in the simulations, and the coding of videos to analyze discourse between partners and the supports provided by teachers. Teacher data will be analyzed using interviews, surveys and journals, with some special focus on how they are seeing students with identified disabilities respond to the materials and simulations. The research team intends to make materials widely available to thousands of students through their networks and webpages, and pursue outreach and dissemination in scholarly and practitioner conferences and publications.

Pages

Subscribe to High School