Login

Focus Group

Community Oriented Science Education

This project contributes to the emerging knowledge base for reform-minded middle school STEM instructional materials development through the development, field-testing, and evaluation of a prototype instructional materials module specifically designed to stimulate and sustain urban-based students’ interest in STEM. The module includes guided inquiry-oriented activities thematically linked by the standards-aligned concept of energy transfer, which highlight the fundamental processes and integrative nature of 21st century scientific investigation.

Lead Organization(s): 
Award Number: 
0918836
Funding Period: 
Tue, 09/01/2009 - Fri, 08/31/2012
Community Oriented Science Education

Building an Understanding of Science


Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

Lead Organization(s): 
Award Number: 
0624436
Funding Period: 
Mon, 03/12/2007 - Wed, 05/11/2011
Project Evaluator: 
BSCS
Building an Understanding of Science

An Architecture of Intensification: Building a Comprehensive Program for Struggling Students in Double-Period Algebra Classes

This project is carrying out a research and development initiative to increase the success rates of our most at-risk high school students—ninth-grade students enrolled in algebra classes but significantly underprepared for high school mathematics. It will also result in new understandings about effective approaches for teaching mathematics to struggling students and about effective ways for implementing these approaches at scale, particularly in urban school districts.

Lead Organization(s): 
Award Number: 
0918434
Funding Period: 
Tue, 09/01/2009 - Thu, 03/01/2012
Project Evaluator: 
Inverness Research Inc.
Full Description: 

Intensified Algebra I, a comprehensive program used in an extended-time algebra class, helps students who are one to two years behind in mathematics become successful in algebra. It is a research and development initiative of the Charles A. Dana Center at The University of Texas at Austin, the Learning Sciences Research Institute at the University of Illinois at Chicago, and Agile Mind, that transforms the teaching of algebra to students who struggle in mathematics. Central to the program is the idea that struggling students need a powerful combination of a challenging curriculum, cohesive, targeted supports, and additional well-structured classroom time. Intensified Algebra I seeks to addresses the need for a robust Algebra I curriculum with embedded, efficient review and repair of foundational mathematical skills and concepts. It aims to address multiple dimensions of learning mathematics, including social, affective, linguistic, and cognitive. Intensified Algebra I uses an asset-based approach that builds on students’ strengths and helps students to develop academic skills and identities by engaging them in the learning experience. The program is designed to help struggling students succeed in catching up to their peers, equipping them to be successful in Algebra I and their future mathematics and science courses.

An Architecture of Intensification: Building a Comprehensive Program for Struggling Students in Double-Period Algebra Classes

Ecology Disrupted: Using Museum-based Science and Educational Technology to Link Real World Environmental Issues to Basic Ecological Principles

This project uses media such as Science Bulletin Snapshots to engage students with current research and to foster scientific understanding and civic engagement. Through environmental case studies, students learn to develop hypotheses, analyze scientific data, and make conclusions. To address the objectives, the project will create inquiry-based case studies to situate several central ecological principles, as determined by national and state standards, into the context of environmental issues.

Lead Organization(s): 
Award Number: 
0733269
Funding Period: 
Sat, 09/01/2007 - Mon, 08/31/2009
Full Description: 

Our project asks whether media-rich curriculum materials that immerse middle school students in real, current scientific research can improve students' understanding of science content, and their understanding and appreciation of science as a way to learn about the natural world.  We are using Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH) in New York City to develop middle and high school case study units on contemporary issues in ecology for students underserved in their connection to nature. We developed two problem-based modules that use current scientific data to link ecological principles to real-world environmental issues. Each unit is constructed around a question linking the ecological topic with human daily life. One unit asks the question, 'How do snowy and icy roads put the Baltimore area's water supply at risk?' The other asks the question, 'How does being able to drive between Los Angeles and Las Vegas in under five hours put the bighorn sheep at risk?' The students must use source material to develop hypotheses to address these questions. They then analyze real data to test their hypotheses. Finally, they watch and analyze Museum media to connect the questions that they investigated to broader ecological principles and issues. Additionally, students are asked at the beginning and the end of these units to self-assess their understanding of the science content, the nature of scientific inquiry, and their place in the natural world.

Ecology Disrupted: Using Museum-based Science and Educational Technology to Link Real World Environmental Issues to Basic Ecological Principles

Planting Science Research in Education

This project is implementing a program of professional development for teachers and web interface that links scientists with urban classrooms. Scientist mentors work with students and teachers through the web to carry out an original \"authentic\" inquiry project in plant science. The classroom intervention involves high school biology students working in assigned teams to generate their own research questions in plant science centered on core biology concepts from the National Science Education Standards.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733280
Funding Period: 
Sat, 09/15/2007 - Wed, 05/30/2012
Project Evaluator: 
Jane Larson, BSCS
Full Description: 

Project Publications and Presentations:

Hemingway, Claire & Packard, Carol (2011, April). Seeds of Wonder and Discovery. Science Scope, v. 34 (8), p. 38.

Planting Science Research in Education

Ecosystems and Evidence Project (Collaborative Research: Berkowitz)

This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?\" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.

Partner Organization(s): 
Award Number: 
0918610
Funding Period: 
Tue, 09/01/2009 - Fri, 08/31/2012
Project Evaluator: 
Jackie DeLisi, Education Development Center, Inc. (EDC)
Ecosystems and Evidence Project (Collaborative Research: Berkowitz)

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Steinberg)

This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.

Award Number: 
0554269
Funding Period: 
Sat, 04/01/2006 - Thu, 03/31/2011
Full Description: 

            CLUSTER (Collaboration for Leadership in Urban Science Teaching, Evaluation and Research) is an NSF-funded TPC project. Its partners are The City College of New York (CCNY), New York Hall of Science (NYHS), and City University of New York’s Center for Advanced Study in Education (CASE). It aims to develop and research a model designed to increase and improve the pool of secondary science teachers who reflect the ethnic distribution of city students and who are prepared to implement inquiry-based science instruction.

            CLUSTER Fellows are undergraduate science majors in New York City. They are recruited, trained, and certified to teach science in New York City middle and high schools. They participate both as students in the CCNY Teacher Education Program and as Explainers in the NYHS Science Career Ladder. Their experiences in class and at the NYHS are integrated and guided by a conceptual framework, which emphasizes science as an active process of discovery where ideas are developed and constructed through meaningful experience.

            CLUSTER aims to produce generalizable knowledge of interest to the field regarding the growth and development of perspective teachers in an experiential training program and to assess the impact and value of the CLUSTER model.

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Steinberg)

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students

This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.

Project Email: 
facets@edc.org
Partner Organization(s): 
Award Number: 
0918438
Funding Period: 
Tue, 09/15/2009 - Tue, 08/31/2010
Project Evaluator: 
Cynthia Char
Full Description: 

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students (FACETS) 

This project is submitted as a full research and development project that addresses challenge #3, how can the ability of teachers to provide STEM education be enhanced?

The FACETS project will develop a 2-year, intensive professional development model to build middle grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model will help teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice. As part of the professional development model, we will create a variety of products:

  • a facilitator’s guide describing the components of the professional development model and suggestions for using the model to provide a professional development program,
  • cyberlearning products such as interactive forums and a vetted resource library, and
  • video and other materials for the professional development activities and resource library.

FACETS includes a formative research component centered on the following questions:

1. How do mathematics teachers’ knowledge and practice of formative assessment change as a result of participation in the proposed professional development?

2. What learning trajectory describes teachers’ learning about formative assessment, and what are common barriers to successful implementation?

Reports of research findings will include journal articles on teachers’ learning trajectory for formative assessment and common barriers to successful implementation faced by teachers.

Intellectual merit: Our field work, supported by existing research, has shown that math teachers have difficulty fully implementing formative assessment in their classroom. Existing professional development programs either present a comprehensive understanding without a focus on mathematics, or focus on mathematics but only emphasize some of the critical aspects needed to bring out the full potential of formative assessment. This project will develop a professional development model that a) presents a comprehensive understanding of formative assessment and b) focuses specifically on mathematics. Furthermore, this project proposes to contribute to the field of mathematics teacher education through a deeper insight into mathematics teachers’ learning and practice of formative assessment. This insight can be used by professional developers and teacher educators in mathematics to make decisions that help teachers progress more effectively in their learning. This project brings together a multi-disciplinary team with expertise in formative assessment, professional development, mathematics, mathematics education, and teacher education research.

Broader impacts: We anticipate that the professional development will have an immediate impact on participating teachers, and on their students, as they learn about and implement formative assessment in their classrooms. Individual districts and schools have expressed an interest in the FACETS professional development program. The New Hampshire State Department of Education also indicates support for statewide implementation. In addition, research results regarding teachers’ learning trajectories for formative assessment will be crucial to inform future professional development and teacher education programs, and to help teachers reflect on, and guide, their own learning. Data regarding the major barriers to teachers’ learning of formative assessment will also impact future professional development by identifying issues needing additional focus, as will data regarding the effect on those barriers of factors such as teaching experience and mathematical knowledge for teaching. Finally, as there is a paucity of video and other examples of formative assessment in mathematics classrooms, the resource library will make widely available a sorely needed resource to teachers grappling with understanding and implementing formative assessment in mathematics classrooms in a practical way.

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students

Community for Advancing Discovery Research in Education (CADRE)

CADRE is the resource network that supports researchers and developers who participate in DR K-12 projects on teaching and learning in the science, technology, engineering and mathematics disciplines. CADRE works with projects to strengthen and share methods, findings, results and products, helping to build collaboration around a strong portfolio of STEM education resources, models and technologies. CADRE raises external audiences’ awareness and understanding of the DR K-12 program, and builds new knowledge.

Project Email: 
cadre@edc.org
Award Number: 
0822241
Funding Period: 
Wed, 10/01/2008 - Mon, 09/30/2013
Project Evaluator: 
UMass Donahue Institute
Full Description: 

CADRE is resource network that supports researchers and developers who particpate in DR K-12 projects on teaching and learning in the science, technology, engineering and mathematics disciplines. CADRE works with projects to strengthen and share methods, findings, results and products, helping to build collaboration around a strong portfolio of STEM education resources, models and technologies. CADRE organizes  technical support activities, conducts portfolio analysis and syntehsis studies, and provides various dissemination activities. The goals of CADRE are to support the imporvment of resarch, evaluation, adn development in STEM eduation and to move forward the goals of NSF and its DR K-12 program.

To accomplish these goals, Education Development Center (EDC), in collaboration with Abt Associates Inc. and Policy Studies Associates, and with the advice and guidance of DR K-12 PIs, carries out the folflowing activities: (a) portfolio assessment to define the projects in terms of composition and major characteristics and identify project needs; (b) synthesis studies to capture a comprehensive view of the portfolio in order to understand the role that the program plays in advancing K-12 student and teacher learning; (c)individual technical support services to project leadership to enhance the rigor of projects; (d) multiple strategies for in-person and virtual technical support and group consultation to PIs based on the principles of commuties of practice; (e) Principal Investigators (PI) meetings, and (f) assistance in disseminating the DR K-12 projects' results and products within the program and throughout the STEM education community.   

Community for Advancing Discovery Research in Education (CADRE)

Science Learning: Integrating Design, Engineering and Robotics (SLIDER)

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

Award Number: 
0918618
Funding Period: 
Thu, 10/01/2009 - Tue, 09/30/2014
Project Evaluator: 
Dr. Gordon Kingsley
Full Description: 

SLIDER is a 5 year $3.5 million grant from the National Science Foundation's (NSF) Discovery Research K-12 (DR-K12) program. During the grant period (10/1/09 -9/30/14), the SLIDER program will seek to answer the question: "What effects do robotics, engineering design, and problem-based inquiry science have on student learning and academic engagement in 8th grade physical science classes?"

The Team:

Georgia Tech faculty and staff from a number of academic units (CEISMC, CETL, Math, Psychology, Biomedical Engineering & Computing) and a national-level advisory board.  

Teachers, principals and school system administrators representing Fulton County Schools, Cobb County Schools  and Emanuel County Schools and the Georgia Department of Education.

Richard Millman  PI
Marion Usselman  Co - PI
Donna Llewellyn Co-PI for Research

Program Goals:

  1. Design and implement a problem-based robotics curriculum as a context for 8th graders to learn physics and reasoning skills, and as a way to increase student engagement, motivation, aptitude, creativity and STEM interest.
  2. Conduct research to determine the effectiveness of the program across all curriculum development parameters.
  3. Determine how students engage the material across ethnic, socio- cultural, gender and geographic (rural, urban, and suburban) lines.
  4. Measure the “staying power” of the experience as students move from middle to high school.

The Method:

Using “backwards design” strategies, the SLIDER curriculum development team at CEISMC will create inquiry-based engineering design instructional materials for 8th grade Physical Science that use robotics as the learning tool and that are aligned with the Georgia Performance Standards (GPS). The materials will employ problem-based challenges that require students to design, program, investigate, and reflect, and then revise their product or solution. They will consist of three 4-6 week modules that cover the physics concepts of Mechanics (force, motion, simple machines), Waves (light, sound, magnetism, electricity, heat), and Energy.   CEISMC will also design the teacher professional development necessary for effective implementation of the curriculum.

Science Learning: Integrating Design, Engineering and Robotics (SLIDER)
Syndicate content