Login

Pedagogy

Cross-National Comparison of School and District Supports for High-Quality Mathematics Instruction in the US and China

This RAPID project is a cross-national comparative study of U.S. and Chinese instructional support systems, building from earlier data about mathematics teaching and learning in large urban school districts of both the United States and the People's Republic of China. The study uses quantitative methods to compare and contrast the effectiveness of supports (e.g., professional development, teacher networks, school leadership) in improving teachers' instructional practices and student achievement using comparable instrumentation.

Lead Organization(s): 
Award Number: 
1321828
Funding Period: 
Sun, 09/15/2013 - Sun, 08/31/2014
Full Description: 

Since the publication of the result that students from Shanghai, China, outperformed students from all other participating countries on the 2009 Programme for International Student Assessment (PISA) in mathematics, researchers have sought to understand why Chinese mathematics education appears to be both more successful at boosting student learning and more equitably distributed. This RAPID project is a cross-national comparative study of U.S. and Chinese instructional support systems, building from earlier data about mathematics teaching and learning in large urban school districts of both the United States and the People's Republic of China. The work is being conducted by researchers from Vanderbilt University, Virginia Polytechnic Institute and State University and Beijing Normal University. The study uses quantitative methods to compare and contrast the effectiveness of supports (e.g., professional development, teacher networks, school leadership) in improving teachers' instructional practices and student achievement using comparable instrumentation.

The study contributes to research and policy in several ways. First, it is helping to identify supports that have been particularly effective in improving mathematics teaching and learning in China. This should inform current theories about how to best support mathematics education in the United States. Second, the cross-nationally validated instruments used to collect the data can be used by other researchers investigating curricular reform implementation cross-nationally. The findings of this study are especially relevant to district leaders as they develop support and accountability systems to effectively implement the content and practice standards of the Common Core State Standards for Mathematics.

This award is co-funded by NSF's International Science and Engineering Section, Office of International and Integrative Activities.

Cross-National Comparison of School and District Supports for High-Quality Mathematics Instruction in the US and China

Improving Competency in Elementary Science Teaching

This project provides elementary teachers, grades 3-5 with a pedagogical framework and related resources for distinguishing quality science teaching. The study focuses on developing and testing a framework, the Quality Science Teaching Continuum (QSTC), to determine its capacity to serve as a potent formative and collaborative tool with which teachers can reflect on their science teaching practices and recognize student behaviors that are indicators of engagement and science learning.

Lead Organization(s): 
Award Number: 
1317068
Funding Period: 
Mon, 07/01/2013 - Tue, 06/30/2015
Full Description: 

This Stanford University project provides elementary teachers, grades 3-5 with a pedagogical framework and related resources for distinguishing quality science teaching. The study focuses on developing and testing a framework, the Quality Science Teaching Continuum (QSTC), to determine its capacity to serve as a potent formative and collaborative tool with which teachers can reflect on their science teaching practices and recognize student behaviors that are indicators of engagement and science learning. The project includes an intensive professional development (PD) that will accompany the instrument designed to develop teachers' understanding of (1) pedagogy, (2) science process and content, (3) community building, and (4) use of QSTC to improve classroom instruction and student engagement.

Teachers will be videotaped during classroom science instruction at various points in the two-year process, and the resulting digital library of teaching videos provides an ongoing reference resource for teachers and others when reflecting on their practice. The project provides a proof of concept and examines the use of a specific, formative, integrative instrument, the QSTC, within an immersive teacher professional development program.

Improving Competency in Elementary Science Teaching

Smarter Together Working Conference: Developing a Shared Curriculum of Complex Instruction for Elementary Mathematics Methods Courses

This working conference will help university professors who teach elementary mathematics methods courses learn to use Complex Instruction, a research-proven pedagogy for building mathematical content knowledge and supporting the learning of diverse students.

Award Number: 
1316235
Funding Period: 
Thu, 08/01/2013 - Fri, 07/31/2015
Full Description: 

This working conference will help university professors who teach elementary mathematics methods courses learn to use Complex Instruction, a research-proven pedagogy for building mathematical content knowledge and supporting the learning of diverse students. In Complex Instruction, educators design tasks that require multiple mathematical abilities to solve. For example, solving a particular task might require computational skills as well as the ability to visualize a 3-dimensional object and represent that object on paper. Through this mathematical complexity, the tasks demand that students engage deeply with mathematics and draw on each others' mathematical strengths. In addition, in Complex Instruction teachers use strategies that minimize status differences in the classroom that impact participation, ensuring that all students - regardless of their popularity, first-language, race, or income level - participate equitably. During the conference, 28 university instructors from across the country will design tasks to be used in mathematics methods courses for prospective elementary teachers. Mathematics educators from University of Georgia, University of Arizona, University of Michigan, and Michigan State University will work together to design and host the conference. The conference is expected to produce a cohort of mathematics educators knowledgeable about Complex Instruction, and who can then support colleagues at their home institutions in learning to use the pedagogy as well as promoting the use of Complex Instruction in mathematics classrooms in U.S. elementary schools.

After learning the essential elements of Complex Instruction, conference participants will design Complex Instruction curriculum modules to implement at their home institutions. Evaluation of the conference will include surveys and phone interviews with conference participants to assess their knowledge of and use of Complex Instruction. In addition, some participants will be selected for more extensive follow-up, including the collection of videos of Complex Instruction lessons in their courses and surveys of their students. Data will be analyzed to identify major themes related to the knowledge of the participants and their students, the supports and obstacles present in various contexts in relation to adopting a new pedagogy, and the impact of Complex Instruction on the methods courses.

All of the tasks and the activities designed during the conference will be available not only to the conference participants but also to anyone interested in Complex Instruction through the website, www.ci.org. In addition, by developing experts in Complex Instruction at more than a dozen universities across the country, the conference will play an important role in disseminating this relatively new, but effective, pedagogy. Evidence about the effectiveness of Complex Instruction suggests that large-scale incorporation of this practice into mathematics methods classrooms will increase the mathematics understandings of prospective elementary teachers and ultimately their students, particularly those in schools with significant numbers of marginalized students.

Smarter Together Working Conference: Developing a Shared Curriculum of Complex Instruction for Elementary Mathematics Methods Courses

CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT) for Students with Learning Disabilities

The goal of this project is to study and support the development of conceptual understanding of fractions by students with learning disabilities (LD). The researcher proposes that rather than focusing on whether LD students can or cannot develop conceptual understanding of fractions, research should attempt to uncover the understanding LD students have and examine how growth of conceptual knowledge occurs in these students.

Lead Organization(s): 
Award Number: 
1253254
Funding Period: 
Tue, 07/01/2014 - Tue, 06/30/2020
Project Evaluator: 
Dr. Mary Little
Full Description: 

The goal of this project is to study and support the development of conceptual understanding of fractions by students with learning disabilities (LD). The researcher proposes that rather than focusing on whether LD students can or cannot develop conceptual understanding of fractions, research should attempt to uncover the understanding LD students have and examine how growth of conceptual knowledge occurs in these students. This approach suggests a reconceptualization of research and instructional practice in mathematics that focus on the conceptual knowledge students with LD can in fact develop.

Through a series of teaching experiments that involve cycles of theorizing, design, implementation, and refinement, the project develops instructional trajectories for LD students in the area of fractions. The research question addressed are: What initial and developing key developmental understandings of fractions do students with learning disabilities evidence through employed strategies, language, and representations? How do students with learning disabilities progress in developing and solidifying conceptual understandings of fractions through their mathematical activity? And, to what extent does an intervention reflective of a research based instructional trajectory facilitate strategic development and increased fraction conceptual knowledge in students with learning disabilities?

The main outcomes of the project include (a) a research-based instructional trajectory for students with LD specific to conceptual understandings of fractions as numeric quantities, (b) a set of 90 fraction tasks to be used for instruction and/or formative assessment in fraction concepts, (c) scoring/coding frameworks and checklists for use with key tasks as formative assessments, (d) decision-making frameworks, task sequencing guides, and suggestions to aid teachers in designing individualized, student-centered instruction, all available via the Internet. Most important, the project has the potential to offer a transformative approach to mathematics instruction for students with LD, bringing together expertise on learning disabilities and mathematics education to address a area in which there is very little research.

The PI will incorporate finding from the study into methods courses for both mathematics education and special education students. She will also develop a graduate course entitled Diagnosis and Remediation.

CAREER: Fraction Activities and Assessments for Conceptual Teaching (FAACT) for Students with Learning Disabilities

Systemic Transformation for Inquiry Learning Environments (STILE) for Science, Technology, Engineering and Mathematics

The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.

Lead Organization(s): 
Award Number: 
1238643
Funding Period: 
Mon, 10/01/2012 - Tue, 09/30/2014
Full Description: 

The Center for Technology and School Change (CTSC) at Teachers College, Columbia University and the Center for Environmental Research and Conservation (CERC) at Columbia University's Earth Institute are working in partnership with three STEM focused New York City schools (K-8) to develop a systemic, transformative approach for interdisciplinary STEM teaching and learning. The planned model prepares teachers to design innovative, authentic STEM projects, and supports administrators in leading such efforts.

CTSC has identified key elements of a robust design process to help teachers move from business- as-usual pedagogy to dramatically new practices in content, pedagogy, and technology use. The program also identifies an interdisciplinary STEM perspective, supported with experts from CERC who provide STEM fieldwork expertise as part of the overall design. Moreover, the project creates research and educational collaborations with diverse, community-based groups (e.g., urban nature centers). The project uses a mobile learning platform to leverage social networking among schools, teachers, students, STEM experts, parents and the community.

The goal of the grant is to establish a culture of inquiry with all partners in order to develop interdiciplinary, authentic STEM learning environments. Design-based research provides iterative cycles of implementation to explore and refine the approach as a transformative model for STEM programs. The model supports a sustainable approach by building the capacity of schools to focus on design issues related to content, pedagogy, and leadership.

Systemic Transformation for Inquiry Learning Environments (STILE) for Science, Technology, Engineering and Mathematics

Identifying and Measuring the Implementation and Impact of STEM School Models

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

Lead Organization(s): 
Award Number: 
1238552
Funding Period: 
Mon, 10/01/2012 - Fri, 09/30/2016
Full Description: 

The goal of this Transforming STEM Learning project is to comprehensively describe models of 20 inclusive STEM high schools in five states (California, New Mexico, New York, Ohio, and Texas), measure the factors that affect their implementation; and examine the relationships between these, the model components, and a range of student outcomes. The project is grounded in theoretical frameworks and research related to learning conditions and fidelity of implementation.

The study employs a longitudinal, mixed-methods research design over four years. Research questions are: (1) What are the intended components of each inclusive STEM school model?; (2) What is the status of the intended components of each STEM school model?; (3) What are the contexts and conditions that contribute to and inhibit the implementation of components that comprise the STEM schools' models?; and (4) What components are most closely related to desired student outcomes in STEM schools? Data gathering strategies include: (a) analyses of school components (e.g., structures, interactions, practices); (b) measures of the actual implementation of components through teacher, school principals, and student questionnaires, observation protocols, teacher focus groups, and interviews; (c) identification of contextual conditions that contribute to or inhibit implementation using a framework inclusive of characteristics of the innovation, individual users, leadership, organization, and school environment using questionnaires and interviews; and (d) measuring student outcomes using four cohorts of 9-12 students, including standardized test assessment systems, grades, student questionnaires (e.g., students' perceptions of schools and teachers, self-efficacy), and postsecondary questionnaires. Quantitative data analysis strategies include: (a) assessment of validity and reliability of items measuring the implementation status of participating schools; (b) exploratory factor analysis to examine underlying dimensions of implementation and learning conditions; and (c) development of school profiles, and 2- and 3-level Hierarchical Linear Modeling to analyze relationships between implementation and type of school model. Qualitative data analysis strategies include:(a) descriptions of intra- and inter-school implementation and factor themes, (b) coding, and (c) narrative analysis.

Expected outcomes are: (a) research-informed characterizations of the range of inclusive STEM high school models emerging across the country; (b) identification of components of STEM high school models important for accomplishing a range of desired student achievement; (c) descriptions of contexts and conditions that promote or inhibit the implementation of innovative STEM teaching and learning; (d) instruments for measuring enactment of model components and the learning environments that affect them; and (e) methodological approaches for examining relationships between model components and student achievement.

Identifying and Measuring the Implementation and Impact of STEM School Models

Modeling in Primary Grades (MPG): Science Learning Through Content Rich Inquiry

This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.

Lead Organization(s): 
Award Number: 
1222853
Funding Period: 
Mon, 10/01/2012 - Wed, 09/30/2015
Full Description: 

This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. Teachers receive professional development around ways in which they can facilitate productive disciplinary discussions with young children that result in students coming to understand core ideas in the Next Generation Science Standards. The project focuses on the topics of matter and sound based on the FOSS units "Solids and Liquids" and "Water," and the STC unit "Sound". It builds on an earlier project on life science for kindergarten teachers and students to expand the research communities understanding of how young children learn in science. Researchers from Purdue University are working with public schools in Lafayette that have high Hispanic populations and low SES, as well as a private school system with a more affluent population.

This project employs a mixed methodological research design that incorporates rich qualitative data collection and analysis combined with a quasi-experimental design that examines student learning across a treatment and comparison group with the same curricular materials but with differing support for teachers to engage students in disciplinary productive discussions about the science phenomena that they are studying. Research questions are designed to elicit descriptions of the differing aspects of learning that are evidenced by students together with rich descriptions of the teaching strategies that are associated with the classroom environments. Because this is an exploratory study, no causal comparisons between teacher practices and student outcomes are drawn, but the project provides the underpinnings that will support future research that would take a more rigorous approach. The project further develops the methodology of examining disciplinary rich description of student models to advance the understanding of how content and reasoning interact with young children.

Recent research in cognition has demonstrated that young children reason in a more sophisticated manner than previously understood. The Next Generation Science Standards has a strong focus on student reasoning practices, and the development of student explanations of science phenomenon requires that students have the opportunity to experience classrooms in which discussions of scientific ideas are scaffolded. Teachers need examples of how to interact with young children and of how to interpret what students say in ways that move the understanding of scientific concepts forward. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.

Modeling in Primary Grades (MPG): Science Learning Through Content Rich Inquiry

Educating the Imagination: A Studio Design for Transformative Science Learning

Educating the Imagination will develop a studio approach to science for underrepresented high school students. The approach integrates scientific and artistic habits of mind and forms of engagement for meaningful learning in water-related sciences. Youth will a) investigate significant water-related phenomena, b) develop creative responses to the phenomena that foster new understandings and possibilities for action, and c) exhibit their responses community-wide to involve others in re-imagining water locally and globally.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1135120
Funding Period: 
Sat, 10/01/2011 - Mon, 09/30/2013
Full Description: 

TERC, in collaboration with the Boston Arts Academy is developing an innovative studio learning environment for students in grades 7-9. This pilot project focuses on object-centered inquiry about water and water-related problems of local and global significance. The project promotes student learning through multi-faceted studies involving hydrology, history, health, digital media, web-based artifact generation, real world data collection, interactions with scientists and artists, and community exhibitions of student work. The primary goal of the Educating the Imagination project is to develop a more effective model for engaging and improving the science learning and achievement of underrepresented urban students.

Studio learning intentionally integrates experimentation with practices of analysis, interpretation, critique of work and conceptual development. During a four week summer studio program, students, guided by teachers and scientists, will produce research-based projects about water and create plans to exhibit their work in the Boston area during the school year. Students will be assessed along multiple dimensions ranging from the depth of their understanding of water science ideas, their ability to make claims and arguments, their use of multiple tools and modes of representation, and the quality of their presentations. Over a two year period researchers will collect data on the studio design model and student learning to determine which aspects of the studio are effective in engaging students in object-oriented inquiry related to important water science ideas and problems.

Educating the Imagination will provide valuable insights about the studio design model and its application to promote science learning. In addition, this project directly addresses the problem of inequality in opportunities to learn and participate in science by developing and testing an innovative, non-traditional learning model with underrepresented urban students. The results of this project could significantly change how we think about and structure STEM learning environments in urban settings.

Educating the Imagination: A Studio Design for Transformative Science Learning

Further Development and Testing of the Target Inquiry Model for Middle and High School Science Teacher Professional Development (Collaborative Research: Yezierski)

This project scales and further tests the Target Inquiry professional development model. The model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers, and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students.

Award Number: 
1118749
Funding Period: 
Mon, 08/15/2011 - Wed, 07/31/2013
Full Description: 

This project scales and further tests the Target Inquiry (TI) professional development model. The TI model involves teachers in three core experiences: 1) a research experience for teachers, 2) materials adaptation, and 3) an action research project. The original program was implemented with high school chemistry teachers at Grand Valley State University (GVSU), and was shown to result in significant increases, with large effect sizes, in teachers' understanding of science inquiry and quality of instruction, and in science achievement of those teachers' students. The scale-up and further testing would involve adding physics, biology and geology at Grand Valley State University, and implementing the program at Miami University (MU) with chemistry teachers. Three research questions will be studied:

1) How do the three TI core experiences influence in-service high school science teachers' (i) understanding of the nature of science; (ii) attitudes and beliefs about inquiry instruction; and (iii) classroom instructional methods in the derivatives of the TI model?

2) How does teacher participation in TI affect students' process skills (scientific reasoning and metacognition) and conceptual understanding of science in the derivatives of the TI model?

3) What are the challenges and solutions related to implementing TI in science disciplines beyond chemistry and in other regions?

The research design is quasi-experimental and longitudinal, incorporating implementation with research, and using quantitative and qualitative methods blended in a design research framework. A total of 54 middle and high school science teachers are being recruited for the study. The TI group is completing the TI program (N = 27; 15 at GVSU; 12 at MU) while the comparison group (same sizes and locations) is not. The comparison group is matched according to individual characteristics and school demographics. All teachers are being studied, along with their students, for 4 years (pre-program, post-RET, post-MA, post-AR/post-program). TI teachers are taking 15 credits of graduate level science courses over three years, including summers. Courses include a graduate seminar focused on preparing for the research experience, the research experience in a faculty member's science lab during the summer, application of research to teaching, action research project development, adaptation and evaluation of inquiry-focused curricula, and interpretation and analysis of classroom data from action research. Consistent feedback from professional development, teachers, and evaluation, including the previous implementation, contributes to a design-based approach. Teacher factors being studied include nature of science, inquiry teaching knowledge and beliefs, and quality of inquiry instruction. Student factors being studied include scientific reasoning; metacognition, self-efficacy, and learning processes in science; and content knowledge and conceptual understanding. Only established quantitative and qualitative instruments are being used. Quantitative analysis includes between-group comparisons by year on post-tests, with pre-tests as covariates, and multi-level models with students nested with teachers, and teachers within sites, with the teacher level as the primary unit of change. Trends over time between the treatment and comparison groups are being examined. The evaluation is using a combination of pre/post causal comparative quantitative measures and relevant qualitative data from project leaders and participants, as well as from the comparison group, to provide formative and summative evaluation input.

Outcomes of the project include documentation and understanding of the impacts on science teachers' instruction and student outcomes of research experiences for teachers when they are supported by materials adaptation and action research, and an understanding of what it takes to scale the model to different science disciplines and a different site. The project is also producing a website of instructional materials for middle and secondary science.

Further Development and Testing of the Target Inquiry Model for Middle and High School Science Teacher Professional Development (Collaborative Research: Yezierski)

Helping Mathematics Teacher Become Culturally Relevant Educators: New Tools for a New Generation-Conference II

This project is hosting a conference for teachers and school administrators on Culturally Relevant Teaching (CRT). Teams of teachers and administrators are recruited from across the country. The conference brings together experts in culturally relevant teaching pedagogy with practitioners around the theme of promoting high achievement in mathematics among minority children and of children in urban settings.

Lead Organization(s): 
Award Number: 
1052662
Funding Period: 
Mon, 08/01/2011 - Tue, 07/31/2012
Full Description: 

The Maryland Institute for Minority Achievement and Urban Education at the University of Maryland is hosting a conference for teachers and school administrators on Culturally Relevant Teaching (CRT). Teams of teachers and administrators are recruited from across the country. The conference brings together experts in culturally relevant teaching pedagogy with practitioners around the theme of promoting high achievement in mathematics among minority children and of children in urban settings.

The conference plan is based on the most rigorous research on CRT and on the findings of a prior conference. A substantial amount of time is provided during the conference for teachers to develop or modify lessons under the guidance of knowledgeable experts.

The conference will accommodate approximately 100 participants. Following the conference participants will have the opportunity to work with members of the Maryland institute to develop strategies for improving achievement of minority students. Additionally, participants will be invited to participate in ongoing seminars and workshops held regularly at the University of Maryland.

Helping Mathematics Teacher Become Culturally Relevant Educators: New Tools for a New Generation-Conference II
Syndicate content