Learning Progression

Experimental Impacts of the Ongoing Assessment Project on Teachers and Students

In this report, we describe the results of a rigorous two-year study of the impacts of a mathematics initiative called Ongoing Assessment Project (OGAP) on teacher and student learning in grades 3-5 in two Philadelphia area school districts. OGAP is a mathematics program which combines teacher formative assessment practices with knowledge of student developmental progressions to build deeper student understanding of mathematics content. OGAP includes teacher professional development, classroom resources, school-based routines for regular practice, and ongoing school-based supports.
Author/Presenter

Jonathan A. Supovitz

Caroline B. Ebby

Janine Remillard

Robert A. Nathenson

Lead Organization(s)
Year
2018
Short Description

In this report, authors describe the results of a rigorous two-year study of the impacts of a mathematics initiative called Ongoing Assessment Project (OGAP) on teacher and student learning in grades 3-5 in two Philadelphia area school districts.

Pathways for Analyzing and Responding to Student Work for Formative Assessment: The Role of Teachers’ Goals for Student Learning

This study explored how teachers interpreted and responded to their own student work during the process of formative assessment. The study involved a purposefully selected sample of 32 teachers in grades K-5 who had been trained by the Ongoing Assessment Project (OGAP) to use learning progressions to analyze and respond to evidence in student work.

Author/Presenter

Caroline Brayer Ebby

Janine Remillard

Jordan H. D'Olier

Lead Organization(s)
Year
2019
Short Description

This study explored how teachers interpreted and responded to their own student work during the process of formative assessment.

Gina’s mathematics: Thinking, tricks, or “teaching”?

Students with learning disabilities display a diverse array of factors that interplay with their mathematical understanding. Our aim in this paper is to discuss the extent to which one case study elementary school child with identified learning disabilities (LDs) made sense of composite units and unit fractions. We present analysis and results from multiple sessions conducted during a teaching experiment cast as one-on-one intervention.

Author/Presenter

Jessica H.Hunt

Beth L.MacDonald

JuanitaSilva

Year
2019
Short Description

This paper discusses the extent to which one case study elementary school child with identified learning disabilities (LDs) made sense of composite units and unit fractions.

What Can We Learn from Correct Answers?

Dig deeper into classroom artifacts using research-based learning progressions to enhance your analysis and response to student work, even when most students solve a problem correctly.

Ebby, C. B., Hulbert, E. T., and Fletcher, N. (2019). What can we learn from correct answers? Teaching Children Mathematics, 25(6), 346-353.

Author/Presenter

Caroline B. Ebby

Elizabeth T. Hulbert

Nicole Fletcher

Lead Organization(s)
Year
2019
Short Description

This article describes how research-based learning progressions can be used to enhance the analysis and response to student work.

Children’s Measurement: A Longitudinal Study of Children’s Knowledge and Learning of Length, Area, and Volume

Quantitative reasoning and measurement competencies support the development of mathematical and scientific thinking in children in the early and middle grades and are fundamental to science, technology, engineering, and mathematics (STEM) education. The sixteenth Journal for Research in Mathematics Education (JRME) monograph is a report on a four-year-long multisite longitudinal study that studied children’s thinking and learning about geometric measurement (i.e., length, area, and volume).

Author/Presenter

Jeffrey E. Barrett

Douglas H. Clements

Julie Sarama

Year
2017
Short Description

This monograph is a report on a four-year-long multisite longitudinal study that studied children’s thinking and learning about geometric measurement (i.e., length, area, and volume).

Evaluation of three interventions teaching area measurement as spatial structuring to young children

We evaluated the effects of three instructional interventions designed to support young children’s understanding of area measurement as a structuring process.

Author/Presenter

Douglas H. Clements

Julie Sarama

Jeffrey E. Barrett

Craig J. Cullen

Aaron Hudyma

Ron Dolgin

Amanda L. Cullen

Cheryl L. Eames

Year
2018
Short Description

In this article, authors evaluated the effects of three instructional interventions designed to support young children’s understanding of area measurement as a structuring process.

Scientific Modeling across the K–12 Continuum: Alignment between Theoretical Foundations and Classroom Interventions

STEM Categorization
Day
Thu

Explore methods and challenges associated with supporting and evaluating scientific modeling in K–12 classrooms in this structured poster session.

Date/Time
-

In this interactive panel symposium, presenters will draw from a set of active DR K-12 projects to explore a diverse array of resources, models, and tools (RMTs) designed to operationalize varying perspectives on scientific modeling in elementary, middle, and secondary classrooms across disciplinary domains.

Session Types

Improving Student Learning and Teacher Practice in Mathematics: A Focus on Formative Assessment

STEM Categorization
Day
Thu

Join a discussion with panelists from several projects about project model designs, initial findings, and implementation challenges associated with formative assessment in mathematics.

Date/Time
-
Session Materials

In this session, four projects will share their work on formative assessment and mathematics learning trajectories, and participants will discuss the implications for formative assessment practices in mathematics.

Session Types

Argumentation and Discourse

STEM Categorization
Day
Thu

Join a discussion about models for teaching and learning argumentation and discourse in mathematics, including implications for teacher practice, classroom structure, and the nature of students’ learning.

Date/Time
-
Facilitators
Session Materials
Presenter Reflections

David Yopp, University of Idaho | June 22, 2016

This session’s conversation focused on ways of viewing argumentation and how argument produces as the content to be learned.

Participants discussed examples (e.g., rational and irrational numbers, solving equations, and natural number operations) in Common Core where the argument students produce is the content. Understanding these concepts included understanding arguments that represent the concept, and these arguments provide access to mathematical notions that have no physical expression.

For example, numbers are classified as rational or irrational through an argument. An arguer might classify a radical as an irrational number by arguing that the radical cannot be expressed as the quotient of integers. When a linear equation is solved and a solution is found, the solution process can be viewed as an argument: that there exist a unique solution. The concept of "solving equations" is represented by this argument.

Following discussion of these examples, participants asked themselves what other areas of content could be viewed as an argument.

Problematizing and Assessing Secondary Mathematics Teachers’ Ways of Thinking

STEM Categorization
Day
Thu

Engage with presenters as they discuss assessment and rubrics designed to measure secondary teachers’ mathematical habits of mind.

Date/Time
-

Work in secondary mathematics education takes many approaches to content, pedagogy, professional development and assessment. This session aims to illuminate the richness of hte content of secondary mathematics and the field of secondary mathematics education by sharing two such approaches and reflecting on the differences and commonalities between the two.   

Session Types