Implementation

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) with Geospatial Information Technology

This project is using innovative Geospatial Information Technology-based learning in high school environmental science studies with a focus on the meteorological and ecological impacts of climate change. The resources developed are using ArcGIS Explorer Desktop and Google Earth software applications to increase students' learning and interest in science and careers and will be adaptable for teachers to improve classroom implementation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019645
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Haynie Research and Evaluation
Full Description: 

STORE is developing and piloting classroom uses of GIS-based interactive data files displaying climatological, topographical, and biological data about an especially ecologically and topographically diverse section of mid-California and a section of western New York State, plus projected climate change outcomes in 2050 and 2099 from an IPCC climate change model. Both areas contain weather stations. The participating students and teachers live in those areas, hence the place-based focus of the project.

To help teachers make curricular decisions about how to use these data with their students, the project has, with input from six design partner teachers, produced a curriculum module exemplar consisting of six lessons. The lessons start with basic meteorological concepts about the relationship between weather systems and topography, then focus on recent climatological and land cover data. The last two lessons focus on IPCC-sanctioned climate change projections in relation to possible fates of different regional species. Technology light versions of these lessons send students directly to map layers displaying the data for scientific analysis. Technology-heavy versions address the additional goal of building students' capacities to manipulate features of geographic information systems (GIS). Hence, the technology-heavy versions require use of the ARC GIS Explorer Desktop software, whereas the technology light versions are available in both the ARC software and in Google Earth. Google Earth makes possible some student interactivity such as drawing transects and studying elevation profiles, but does not support more advanced use of geographic information system technology such as queries of data-containing shape files or customization of basemaps and data representational symbology.

Answer keys are provided for each lesson. Teachers have in addition access to geospatial data files that display some storm systems that moved over California in the winter of 2010-2001 so that students can study relationships between actual data about storm behavior and relationship to topography and the climatological data which displays those relationships in a summary manner. This provides the student the opportunity to explore differences between weather and climate.

To increase the likelihood of successful classroom implementation and impact on student learning, the professional development process provides the conditions for teachers to make good adaptability decisions for successful follow-through. Teachers can implement the six lessons or adapt them or design their own from scratch. The project requires that they choose from these options, explain on content representation forms their rationales for those decisions, and provide assessment information about student learning outcomes from their implementations. The project provides the teachers with assessment items that are aligned to each of the six lessons, plus some items that test how well the students can interpret the STORE GIS data layers.

All of this work is driven by the hypothesis that science teachers are more likely to use geospatial information technology in their classrooms when provided with the types of resources that they are provided in this project. In summary, these resources include:

1.     tutorials about how to use the two GIS applications

2.     sufficiently adaptive geospatial data available in free easily transportable software applications

3.     lessons that they can implement as is, adapt, or discard if they want to make up their own (as long as they use the data)

4.     supportive resources to build their content knowledge (such as overview documents about their states' climates and information about the characteristics of each data layer and each data set available to them).

 

The growth and evolution of the teachers' technological pedagogical content knowledge is being tracked through interviews, face-to-face group meetings, and classroom observations. Also being tracked is the extent to which the teachers and students can master the technology applications quickly and on their own without workshops, and how well teachers provide feedback to the students and assess their learning outcomes when implementing STORE lessons. As the project moves into its third and final year, we will be studying outcomes from the first classroom implementation year (i.e. year two of the project) and determining to what extent the professional development strategies need to be revised in relation to how the teachers are responding to the project resources and forms of professional support. In the end, the project will contribute to the knowledge base about what professional development strategies are appropriate for getting teachers to use these types of resources, what decisions teachers make about how to use the resources for different courses and student groups they teach, and what are the outcomes of those uses in terms of curricular material, instructional strategies, and student learning.

Pre-K Early Algebra Through Quantitative Reasoning (PreKEA)

This project is initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds.

Lead Organization(s): 
Award Number: 
1212766
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Full Description: 

This is an exploratory project that endeavors to initiate an innovative approach to preK students’ development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the successful Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The PreKEA project will adapt and refocus the conceptual framework of the E-D pre-numeric stage with respect to early algebra in the context of teaching experiments with preK and kindergarten students. A primary goal of the project is to obtain a proof-of-concept and lay down a conceptual and empirical foundation for a subsequent full research and development DR K-12 proposal.

The importance of early algebra (EA) in mathematics education has been acknowledged by the publication of a separate chapter solely devoted to early algebra and algebraic reasoning in the second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007). Given that “much prior research highlights the difficulties that middle and high school students have with algebra,” the proponents of EA argue that “the weaving of algebra throughout the K-12 curriculum could lend coherence, depth, and power to school mathematics, and replace late, abrupt, isolated, and superficial high school algebra courses” (Carraher & Schliemann, 2007, pp. 670-671). At the same time, “quantitative thinking is unavoidable in EA” as it “does not seem realistic to first introduce youngsters to the algebra of number and then proceed to problems steeped in quantities as ‘applications’ of algebra” (ibid., p. 671). While the E-D curriculum with its proven track record focuses on the development of quantitative and measurement reasoning among elementary-aged children in grades 1–6, it is feasible that much younger children, even four-year-olds, can access the pre-numeric ideas. This is supported by research by Baillargeon (2001) and Wynn (1997) who showed that infants as young as two-months old demonstrate the development of number and measurement concepts. The PreKEA project will identify key concepts of the E-D pre-numeric stage relevant to four-year-olds and develop and explore lesson units which can be integrated into US preK settings. The project team combines the international expertise of PI Berkaliev who served as project coordinator and international liaison for an NSF-funded international project US-Russian Working Forum on Elementary Mathematics: Is the Elkonin-Davydov Curriculum a Model for the US? and who also brings the perspective of a mathematician, with the theoretical, methodological, and empirical expertise of co-PI Dougherty who has been one of the leading figures in working with, adapting, and studying the implementations of the E-D curriculum in the US, as well as a group of five leading Russian experts who developed, implemented, and studied the original E-D curriculum. The project resources include the E-D curriculum materials and articles only available in Russian.

The PreKEA (PreK Early Algebra through Quantitative Reasoning) project has the potential to make contributions beyond the preK early algebra curriculum that it will develop and implement. The PreKEA project can benefit disadvantaged students by using an innovative approach to EA instruction that has the potential to broaden access and at an early stage change the situation when disproportionately many disadvantaged students are not prepared adequately for learning quantitative reasoning and algebra. With research in preK narrowly focused on particular topics, the results of this project have the potential to inform a broader field including mathematics education and early childhood education with evidence that young children can access and interact with more complex mathematics, extending beyond counting.

Developers and researchers at the Illinois Institute of Technology and Iowa State University are initiating an innovative approach to pre-K students' development of quantitative reasoning through measurement. This quantitative approach builds on measurement concepts and algebraic design of the pre-numeric stage of instruction found in the Elkonin-Davydov (E-D) elementary mathematics curriculum from Russia. The project team is adapting and refocusing the conceptual framework and learning tasks of the E-D pre-numeric stage for use with four-year-olds. The adaptation is being done in collaboration with experts in Russia who were involved in the original E-D development. A primary goal of the project is to obtain a proof-of-concept and lay down a conceptual and empirical foundation for a subsequent research and development.

The research progresses using teaching experiments involving six students. Each student is engaged in 15 minute one-on-one sessions twice each week. Sessions are videotaped and transcribed for further analysis. The analysis of the data is conducted by the project team in collaboration with Russian consultants.

The research findings and methodology will provide grounds for supporting more complex and sophisticated mathematical ideas that will inform curriculum development for pre-K students and teachers. Results will be published and reported widely.

Evaluating the Developing Mathematical Ideas Professional Development Program: Researching its Impact on Teaching and Student Learning

This is a 3.5-year efficacy study of the Developing Mathematical Ideas (DMI) elementary math teacher professional development (PD) program. DMI is a well-known, commercially available PD program with substantial prior evidence showing its impact on elementary teachers' mathematical and pedagogical knowledge. However, no studies have yet linked DMI directly with changes in teachers' classroom practice, or with improved student outcomes in math. This study aims to remedy this gap.

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019769
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2012
Project Evaluator: 
Bill Nave
Full Description: 

This is a 3.5-year efficacy study of the Developing Mathematical Ideas (DMI) elementary math teacher professional development (PD) program. DMI was developed by staff from Education Development Center (EDC), SummerMath for Teachers, and TERC, the STEM research and development institution responsible for this research. DMI is a well-known, commercially available PD program with substantial prior evidence showing its impact on elementary teachers' mathematical and pedagogical knowledge. However, no studies have yet linked DMI directly with changes in teachers' classroom practice, or with improved student outcomes in math. This study aims to remedy this gap.

The research questions for the study are:

1) Does participation in the Developing Mathematical Ideas (DMI) professional development program lead to increases in reform-oriented teaching?

2) Does participation in DMI lead to increases in students' mathematics learning and achievement, especially in their ability to explain their thinking and justify their answers?

3) What is the process by which a reform-oriented professional development program can influence teaching practice and, thus, student learning? Through what mechanisms does DMI have impact, and with what kinds of support do we see the desired changes on our outcome measures when the larger professional development context is examined?

The dependent variables for this study include a) teachers' pedagogical and mathematics knowledge for teaching; b) the nature of their classroom practice; and c) student learning/ achievement in mathematics.

The study uses experimental and quasi-experimental methods, working with about 195 elementary grades teachers and their students in Boston, Springfield, Leominster, Fitchburg, and other Massachusetts public schools. Volunteer teachers are randomly assigned either to PD with DMI in the first year of the efficacy study, or to a control group that will wait until the second year of the study to receive DMI PD. Both groups of teachers will be followed through two academic years. Analyses use OLS regression, hierarchical modeling, and structural equation modeling, as appropriate, to compare the two groups and to track changes over time. In this way, the project explores several aspects of a conceptual framework hypothesizing relationships among PD, teacher mathematical and pedagogical knowledge, classroom teaching practice, and student outcomes. There are multiple measures of each construct, including video-analysis of teacher practice, and a new video-based measure of teacher knowledge.

The study tests the impact of DMI in a range of districts (large urban, small urban, suburban) serving an ethnically and economically diverse mix of students. It provides much needed, rigorous evidence testing the efficacy of this reform-oriented professional development program. It also directly explores the commonplace theory that teachers' understanding of content and student thinking and their encouragement of rich mathematical discourse for student sense-making lead to improvement on measures of mathematics achievement. Findings from the study are disseminated to both research and practitioner communities. The project provides professional development in mathematics to about 195 teachers to improve their ability to teach important concepts. If the evidence for efficacy is positive, then even larger-scale use of this PD program is likely.

Efficacy Study of Project-Based Inquiry Science

This research and development project examines the impact of the Project-Based Inquiry Science (PBIS) middle school science curriculum. The research questions explored will look into efficacy, implementation, and teacher practice. A unique feature of the study’s design is an analytic focus on the conditions needed to implement the curriculum in ways that improve student learning in light of the Framework for K-12 Science Education.

Award Number: 
1020407
Funding Period: 
Sun, 08/15/2010 to Fri, 07/31/2015
Full Description: 

This research and development project studies the impact of Project-Based Inquiry Science (PBIS) on 6th grade students in a large urban school district. PBIS is a comprehensive, 3-year middle school science curriculum that focuses on standards-based science content and that uses project-based inquiry science units to help students learn. NSF funded the development of PBIS over the past two decades, with major investments made in the design of materials and with associated teacher professional development designed to help teachers understand the content of the units and how to teach them. Prior small-scale studies of PBIS have shown positive impact on student achievement and motivation, and on teacher use of reform-based instruction. The research questions explored are:

1. Efficacy. What is the impact of PBIS on student learning? To what extent do students in PBIS perform better than non-PBIS students on measures of learning?
2. Enactment and teacher practice. What is the impact of the curriculum on teaching quality? What is the fidelity of classroom implementation? How does the depth and level of implementation relate to student outcomes?

The study involves both quantitative and qualitative methods; the use of an experimental design allows estimates of causal impacts when combining professional development with the curriculum materials. This is a randomized control trial to test the efficacy of PBIS in 42 middle schools and with ˜120 teachers (21 schools and ˜60 teachers per condition), and affecting approximately 8,500 6th grade students. The dependent variables for students include results on state-level achievement tests and measures of their ability to develop and use models and construct explanations in the context of the curriculum units. Mediational analysis measures the association between contextual factors such as fidelity of implementation and quality of the professional development experience and student learning, allowing a deeper understanding of results.

This work is critical to the ongoing effort to support standards-based curriculum reform in science. PBIS has enjoyed some success in urban settings with diverse groups of students, including those from historically underrepresented groups in science, and now moves to larger scale. This curriculum is among a small number of science curriculum initiatives that are at a stage in the research and development cycle where implementation efforts are focused on scaling to a broader range of schools and districts. The curriculum units are based on design principles drawn from theory and research on how students learn and are aligned with learning goals found in state and national standards. Moreover, its design reflects where the science education field is headed – teaching a few big ideas and integrating scientific practices. Project outcomes will provide evidence about the effects of a published and available inquiry-based science curriculum.

Fidelity of Implementation Webinar

Event Date: 
Wed, 07/07/2010 - 12:00pm to 1:30pm
Sponsoring Organization: 
Event Contact: 

This webinar will describe work conducted at the Center for Elementary Mathematics and Science Education reform that focuses on the development of a suite of instruments for measuring fidelity of implementation (FOI) across multiple programs. The webinar will include a description of CEMSE’s conceptual framework that underlies the FOI measurement approach and then will show how that approach is operationalized via a critical component approach to FOI measurement.

Discipline / Topic: 
Event Type: 

Urban Middle Grades Mathematics Curriculum Implementation

Presenter(s): 
Karen D. King
Monica Mitchell
Candace Barriteau Phair
Jessica Tybursky
Contact Info: 
Target Audience: 
Presentation Type: 

CAREER: A Study of Strategies and Social Processes That Facilitate the Participation of Latino English Language Learners in Elementary Mathematics Classroom Communities

The project aims to: (1) study resources and strategies for teachers that will facilitate participation of 3rd grade Latino English Language Learners (ELLs) in the mathematics classrooms; (2) develop related teacher professional development (PD) materials; and (3) integrate research and teaching activities. The basic research question is: How can 3rd grade teachers facilitate better mathematics instruction for ELLs?

Lead Organization(s): 
Award Number: 
0844556
Funding Period: 
Wed, 07/15/2009 to Mon, 06/30/2014
Full Description: 

The project aims to: (1) study resources and strategies for teachers that will facilitate participation of 3rd grade Latino English Language Learners (ELLs) in the mathematics classrooms; (2) develop related teacher professional development (PD) materials; and (3) integrate research and teaching activities. The basic research question is: How can 3rd grade teachers facilitate better mathematics instruction for ELLs? The PI will conduct a longitudinal study with teachers over three years in nine third-grade classrooms involving 20 Latino ELLs in each classroom. Data (district-administered assessments, one-on-one formal interviews, classroom artifacts, brief conversations with children following the videotaped lessons) will be collected from multiple sources including the use of head-mounted cameras to videotape classroom social processes. Also, existing research base and data from the nine classrooms will be used to develop, test, and publish PD materials for pre-service and practicing elementary teachers. The integrated education activities will have a direct impact on the design of University of Missouri Teacher Development Program, Masters Programs, TESOL Certification Program, and Mathematics Education Doctoral Program as well as local schools. The proposed project is qualitative. Teachers will also participate in a three-year professional development on ELL strategies and use classroom activities in the fall semester that are designed to assist 3rd grade Latinos acquire mathematical competence on various aspects of the number sense strand of the mathematics curriculum. All the relevant instruments will be collected and analyzed. Findings from the proposed research and integrated research/education activities will expand the knowledge base in the fields of elementary mathematics education and multilingual education.

The project research and education activities will inform our understanding of effective strategies in mathematics classrooms that will influence learning processes and ultimately student outcomes relevant to Latino ELLs and potentially other groups of underrepresented students. Findings from the project will promote effective teaching and learning of mathematics at the elementary level and will be broadly disseminated to students, teachers, teacher educators, and education researchers throughout the U.S. The PI will create a vehicle (i.e., PD materials) for U.S. elementary teachers to discuss critical issues related to engaging a group of students that have typically been non-participants in mathematics classrooms and potentially facilitate more effective participation for this growing population.

Data Games: Tools and Materials for Learning Data Modeling (Collaborative Research: Finzer)

The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.

Project Email: 
Lead Organization(s): 
Award Number: 
0918735
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
James Hammerman
Full Description: 

Students playing computer games generate large quantities of rich, interesting, highly variable data that mostly evaporate when the game ends. What if in a classroom setting, data from games students played remained accessible to them for analysis? In software and curriculum materials developed by the Data Games project at UMass Amherst and KCP Technologies, data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and try their strategies in another round of the game.

 

The video games are embedded in an online data analysis learning environment that is based on desktop software tools Fathom® Dynamic Data and Tinkerplots® Dynamic Data Exploration, widely used in grades 5–8 and 8–14 respectively. The game data appear in graphs and tables in real time, allowing several cycles of strategy improvement in a short time. The games are designed so that these cycles improve understanding of specific data modeling and/or mathematics concepts.

 

The research strand of the Data Games project focuses on students’ creation of data representations that model a real-world context. Findings from this research have been incorporated into the design of the data structures in the software.

Diagnostic E-learning Trajectories Approach (DELTA) Applied to Rational Number Reasoning for Grades 3-8

This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.

Project Email: 
Award Number: 
0733272
Funding Period: 
Sat, 09/01/2007 to Tue, 08/31/2010
Project Evaluator: 
William Penuel (SRI)
Full Description: 

This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.

The diagnostic system to be developed for teachers would be used in assessing their students' knowledge and would identify difficulties in understanding five key clusters of concepts and skills in rational number reasoning. It would also investigate the diagnostic system's effects on student and teacher learning in relation to state standards, assessments, and curricular programs. The five areas include understanding: (1) multiplicative and division space; (2) fractions, ratio, proportion and rates; (3) rectangular area and volume; (4) decimals and percents; and (5) similarity and scaling.

The diagnostic measures will include diagnostic interviews collecting data using a handheld computer, two types of group-administered assessments of student progress, one set along learning trajectories for each of the five sub-constructs and one composite measurement per grade. The diagnostic system will produce computer-based progress maps, summarizing individual student and class performance and linking to state assessments.

Pages

Subscribe to Implementation