Educational Technology

COVID-19 as a Magnifying Glass: Exploring the Importance of Relationships as Education Students Learn and Teach Robotics via Zoom

Ed+gineering, an NSF-funded program, adapted hands-on robotics instruction for online delivery in response to the COVID-19 pandemic. This qualitative multiple case study shares the experiences of participating education students in spring 2021 as they collaborated virtually with engineering students and fifth graders to engineer bioinspired robots in an afterschool technology club adapted to be virtual.

Author/Presenter

Jennifer Kidd

Krishnanand Kaipa

Kristie Gutierrez

Min Jung Lee

Pilar Pazos

Stacie I. Ringleb

Lead Organization(s)
Year
2022
Short Description

Ed+gineering, an NSF-funded program, adapted hands-on robotics instruction for online delivery in response to the COVID-19 pandemic. This qualitative multiple case study shares the experiences of participating education students in spring 2021 as they collaborated virtually with engineering students and fifth graders to engineer bioinspired robots in an afterschool technology club adapted to be virtual.

MindHive: An Online Citizen Science Tool and Curriculum for Human Brain and Behavior Research

MindHive is an online, open science, citizen science platform co-designed by a team of educational researchers, teachers, cognitive and social scientists, UX researchers, community organizers, and software developers to support real-world brain and behavior research for (a) high school students and teachers who seek authentic STEM research experiences, (b) neuroscientists and cognitive/social psychologists who seek to address their research questions outside of the lab, and (c) community-based organizations who seek to conduct grassroots, science-based research for policy change.

Author/Presenter

Suzanne Dikker

Yury Shevchenko

Kim Burgas

Kim Chaloner

Marc Sole

Lucy Yetman-Michaelson

Ido Davidesco

Rebecca Martin

Camillia Matuk

Lead Organization(s)
Year
2022
Short Description

MindHive is an online, open science, citizen science platform co-designed by a team of educational researchers, teachers, cognitive and social scientists, UX researchers, community organizers, and software developers to support real-world brain and behavior research for (a) high school students and teachers who seek authentic STEM research experiences, (b) neuroscientists and cognitive/social psychologists who seek to address their research questions outside of the lab, and (c) community-based organizations who seek to conduct grassroots, science-based research for policy change.

The Potential of Digital Collaborative Environments for Problem-based Mathematics Curriculum

In this paper, we present an overview of the design research used to develop a digital collaborative environment with an embedded problem-based curriculum. We then discuss the student and teacher features of the environment that promote inquiry-based learning and teaching.

Author/Presenter

Alden J. Edson

Elizabeth Difanis Phillips

Lead Organization(s)
Year
2022
Short Description

In this paper, we present an overview of the design research used to develop a digital collaborative environment with an embedded problem-based curriculum. We then discuss the student and teacher features of the environment that promote inquiry-based learning and teaching.

Teaching Risk and Uncertainty in a Changing World

While tragedy has struck an inordinate number of students in the past several years, not all areas of the country are at risk for every natural hazard all the time. To avoid having students feel like Chicken Little under a falling sky, the GeoHazard project uses simulations, data, experimentation, and scientific argumentation to teach about risk and uncertainty. We have created three scaffolded online modules focused on hurricanes, wildfires, and inland flooding to help teach these concepts.

Author/Presenter

Trudi Lord

Lead Organization(s)
Year
2022
Short Description

While tragedy has struck an inordinate number of students in the past several years, not all areas of the country are at risk for every natural hazard all the time. To avoid having students feel like Chicken Little under a falling sky, the GeoHazard project uses simulations, data, experimentation, and scientific argumentation to teach about risk and uncertainty. We have created three scaffolded online modules focused on hurricanes, wildfires, and inland flooding to help teach these concepts. Through investigations using both simulations and real-world data, these curriculum units introduce students to the scientific factors responsible for these hazards and provide practice in interpreting forecasts.

A Map that Shows Earth Rocks!

Concord Consortium’s new Earth Rocks Map displays a generalized representation of Earth’s geology, focused primarily on the distribution of the three major rock types (igneous, metamorphic, and sedimentary). What makes this map different is that it strips out information about geologic eras, highlighting the distribution of rocks found on Earth’s surface.

Lord, T. & Pallant, A. (2022, November 21). A map that shows Earth rocks! Concord Consortium Blog. https://concord.org/blog/a-map-that-shows-earth-rocks/

Author/Presenter

Lead Organization(s)
Year
2022
Short Description

Concord Consortium’s new Earth Rocks Map displays a generalized representation of Earth’s geology, focused primarily on the distribution of the three major rock types (igneous, metamorphic, and sedimentary). What makes this map different is that it strips out information about geologic eras, highlighting the distribution of rocks found on Earth’s surface.

Professional Noticing as Student-Centered: Pre-service Teachers’ Attending to Students’ Mathematics in 360 Video

Teachers’ professional noticing has been described as transitioning from descriptions of general pedagogy to analysis of students’ mathematical procedures and conceptual reasoning. Such a shift is described as a transition towards more student-centered noticing. In the present study, we used screen recordings of pre-service teachers’ (PSTs) 360 video viewing to examine the relationship between where and what PSTs’ looked at and what they attended to in writing.

Author/Presenter
Karl W. Kosko

Maryam Zolfaghari

Jennifer L. Heisler

Lead Organization(s)
Year
2022
Short Description

Teachers’ professional noticing has been described as transitioning from descriptions of general pedagogy to analysis of students’ mathematical procedures and conceptual reasoning. Such a shift is described as a transition towards more student-centered noticing. In the present study, we used screen recordings of pre-service teachers’ (PSTs) 360 video viewing to examine the relationship between where and what PSTs’ looked at and what they attended to in writing.

Preservice Teachers’ Focus in 360 Videos: Understanding the Role of Presence, Ambisonic Audio, and Camera Placement

Immersive 360 videos are increasingly being used in pre-service teachers (PST) education. There is preliminary evidence that this technology may benefit future educators’ focus and attention to classroom settings and events. However, more analytical efforts are needed to better understand its potential impact on reported focus of attention (RFA) among future educators. This article addresses this gap by presenting the findings of a study on 360 videos that involved 92 PSTs.

Author/Presenter

Lead Organization(s)
Year
2022
Short Description

Immersive 360 videos are increasingly being used in pre-service teachers (PST) education. There is preliminary evidence that this technology may benefit future educators’ focus and attention to classroom settings and events. However, more analytical efforts are needed to better understand its potential impact on reported focus of attention (RFA) among future educators. This article addresses this gap by presenting the findings of a study on 360 videos that involved 92 PSTs.

Using the COVID-19 Pandemic to Create a Vision for XR-based Teacher Education Field Experiences

If there was a bright side to the COVID-19 pandemic, particularly related to education, it was the massive and rapid introduction of educational technologies to scaffold teaching and learning. Most notably, within teacher education, this included extended reality (XR) technologies to supplement or replace face-to-face field experiences. With the pandemic turning endemic, and with preK-12 schools returning to traditional modalities, there is a danger that the successes of virtual field experiences may be lost.

Author/Presenter

Richard E. Ferdig

Karl W. Kosko

Enrico Gandolfi

Lead Organization(s)
Year
2022
Short Description

This article presents a vision for 2025 to implement low cost and effective extended reality (XR) technologies to supplement teacher education field experiences, regardless of if and when another global or local crisis occurs (e.g., pandemic, war, weather). In doing so, empirical and theoretical research is presented that argues for teacher educators to seek out and employ more immersive representations of practice that take advantage of the perceptual capacity of XR.

Examining How Using Dichotomous and Partial Credit Scoring Models Influence Sixth-Grade Mathematical Problem-Solving Assessment Outcomes

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Author/Presenter

Toni A. May

Kristin L. K. Koskey

Jonathan D. Bostic

Gregory E. Stone

Lance M. Kruse

Gabriel Matney

Year
2023
Short Description

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Examining How Using Dichotomous and Partial Credit Scoring Models Influence Sixth-Grade Mathematical Problem-Solving Assessment Outcomes

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).

Author/Presenter

Toni A. May

Kristin L. K. Koskey

Jonathan D. Bostic

Gregory E. Stone

Lance M. Kruse

Gabriel Matney

Year
2023
Short Description

Determining the most appropriate method of scoring an assessment is based on multiple factors, including the intended use of results, the assessment's purpose, and time constraints. Both the dichotomous and partial credit models have their advantages, yet direct comparisons of assessment outcomes from each method are not typical with constructed response items. The present study compared the impact of both scoring methods on the internal structure and consequential validity of a middle-grades problem-solving assessment called the problem solving measure for grade six (PSM6).